Research on the charge inducing regularity of coal rock at different loading rate in uniaxial compression tests
-
摘要: 利用自主研制的电荷感应仪,建立单轴压缩条件下煤岩电荷感应试验系统.研究了煤、花岗岩、砂岩在不同加载速率下的电荷感应规律.试验结果表明:煤岩电荷感应最大值在应力达到极限强度前出现,且随加载速率增加,电荷最大值比应力极限强度提前出现时间有减短趋势.不同性质煤岩体,电荷感应最大值有较大区别,花岗岩电荷最大值大于煤电荷最大值,煤电荷最大值大于砂岩电荷最大值.当应力较小时,煤岩只产生微量的电荷信号,当应力达到煤岩极限应力的90%左右时产生大量的电荷信号,说明煤岩电荷感应存在应力阈值.因此,电荷感应方法作为预测预报动力灾害是可行的,值得深入研究.Abstract: The coal rock charge induction test system under the condition of uniaxial compression is established by use of the self-developed charge induction instrument. And the charge induction laws under different loading rate of coal, granite, sandstone are researched. The experiment results show that the maximum value of coal rock charge induction appears before the stress reaches its peak, and with the increase of loading rate, the time of maximum charge value preceding the strength limit tends to be shorter. The maximum value of coal rock charge induction differs greatly among the coal rock of different properties. The maximum value of granite charge is greater than that of coal charge, and maximum value of coal charge is greater than that of sandstone. Weak charge signals are generated when the stress is small; when the stress reaches about 90% of the ultimate stress of coal rock a large amount of charge signals are generated, it illustrates that stress threshold exists in the coal rock charge induction. So the charge induction method is feasible for the forecast of dynamic disaster and it worth to be researched deeply.
-
Key words:
- Coal and rock /
- The charge induction /
- Stress threshold /
- Characteristics /
- Loading rate
-
-
[1] 窦林名, 何学秋. 冲击矿压防治理论与技术. 徐州: 中国矿业大学出版社, 2001. Dou L M, He X Q. Theory and Technology of Rock Burst Prevention (in Chinese). Xuzhou: China University of Mining and Technology Press, 2001.
[2] 潘一山, 李忠华, 章梦涛. 我国冲击地压分布、类型、机理及防治研究. 岩石力学与工程学报, 2003, 22(11): 1844-1851. Pan Y S, Li Z H, Zhang M T. Distribution, type, mechanism and prevention of rockbrust in China. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 2003, 22(11): 1844-1851.
[3] 何继善, 吕绍林. 瓦斯突出地球物理研究. 北京: 煤炭工业出版社, 1999. He J S, Lü S I. Geophysical Study on Coal and Gas Outburst (in Chinese). Beijing: China Coal Industry Publishing House, 1999.
[4] 何学秋, 刘明举. 含瓦斯煤岩破坏电磁动力学. 徐州: 中国矿业大学出版社, 1995. He X Q, Liu M J. Fracture Electro-Magnetic Dynamic of Coal or Rock Containing Gas (in Chinese). Xuzhou: China University of Mining and Technology Press, 1995.
[5] 王恩元, 李忠辉, 刘贞堂等. 受载煤体表面电位效应的实验研究. 地球物理学报, 2009, 52(5): 1318-1325. Wang E Y, Li Z H, Liu Z T, et al. Experimental study on surface potential effect of coal under load. Chinese J. Geophys. (in Chinese), 2009, 52(5): 1318-1325.
[6] 王恩元. 含瓦斯煤破裂的电磁辐射和声发射效应及其应用研究. 徐州: 中国矿业大学. 1997. Wang E Y. The effect of EME & AE during the fracture of coal containing gas and its application(in Chinese). Xuzhou: China University of Mining and Technology,1997.
[7] 王恩元, 何学秋, 聂百胜等. 电磁辐射法预测煤与瓦斯突出原理. 中国矿业大学学报, 2000, 29(3): 225-229. Wang E Y, He X Q, Nie B S, et al. Principle of predicting coal and gas outburst using electromagnetic emission. Journal of China University of Mining and Technology (in Chinese), 2000, 29(3): 225-229.
[8] 王云海, 何学秋, 窦林名. 煤样变形破坏声电效应的演化规律及机理研究. 地球物理学报, 2007, 50(5): 1569-1575. Wang Y H, He X Q, Dou L M. Study on regularity and mechanism of acoustic emission and electromagnetic emission during fracture process of coal samples. Chinese J. Geophys. (in Chinese), 2007, 50(5): 1569-1575.
[9] 王恩元, 何学秋, 刘贞堂等. 煤岩动力灾害电磁辐射监测仪及其应用. 煤炭学报, 2003, 28(4): 366-369. Wang E Y, He X Q, Liu Z T, et al. Electromagnetic radiation detector of coal or rock dynamic disasters and its application. Journal of China Coal Society (in Chinese), 2003, 28(4): 366-369.
[10] Frid V. Rockburst hazard forecast by electromagnetic radiation excited by rock fracture. Rock Mechanics and Rock Engineering, 1997, 30(4): 229-236.
[11] Frid V. Electromagnetic radiation method for rock and gas outburst forecast. Journal of Applied Geophysics, 1997, 38(2): 97-104.
[12] Frid V I, Shabarov A N, Proskuryakov V H, et al. Formation of electromagnetic radiation in coal stratum. Journal of Mining Science, 1992, 28(2): 139-145.
[13] Kilkeev R S. 力荷载下的岩石电场.// 萨多夫斯基 M A. 苏联地震预报研究文集. 第三版. 徐玉凤译. 北京: 地震出版社, 1993: 31-34. Kilkeev R S. Electric field strength of rock under the load.// Sadovskiy M A, ed. Proceedings of Soviet Union Earthquake Prediction Research (in Chinese). Translated by Xu Y F. Beijing: Seismological Press, 1993: 31-34.
[14] Kuksenko V S, Makhmudov K F. Mechanically-induced electrical effects in natural dielectrics. Technical Physics Letters, 1997, 23(2): 126-127.
[15] Kuksenko V S, Makhmudov K F, Ponomarev A V. Relaxation of electric fields induced by mechanical loading in natural dielectrics. Physics of the Solid State, 1997, 39(7): 1065-1066.
[16] 郝锦绮, 刘力强, 龙海丽等. 双轴压力下岩样自电位变化实验的新结果. 地球物理学报. 2004, 47(3): 475-482. Hao J Q, Liu L Q, Long H L, et al. New result of the experiment on self-potential change of rocks under biaxial compression. Chinese J. Geophys. (in Chinese), 2004, 47(3): 475-482.
[17] 孙正江, 王丽华, 高宏. 岩石标本破裂时的电磁辐射和光发射. 地球物理学报, 1986, 29(5): 491-495. Sun Z J, Wang L H, Gao H. Electromagnetic emission and light radiation during fracture of rock samples. Chinese J. Geophys. (in Chinese), 1986, 29(5): 491-495.
[18] 郭自强, 罗祥麟, 钱书清等. 矿山爆破中的电磁辐射. 地球物理学报, 1999, 42(6): 834-840. Guo Z Q, Luo X L, Qian S Q. et al. Electromagnetic emissions during quarry blasting. Chinese J. Geophys. (in Chinese), 1999, 42(6): 834-840.
[19] 波诺马廖夫A B. 岩石形变与破裂的电现象. // 萨多夫斯基M A. 苏联地震顶报研究义集. 张肇诚等译. 北京: 地震出版社, 1993. Ponomariov A B. Electric phenomenon of deformation and fracture of rock. // Sadovskiy M A, ed. Collected Works of Soviet Earthquake Prediction Research. Zhang Z C, et al. Translate. Beijing: Seismological Press, 1993.
[20] 王丽华, 孙正江, 陈化然. 岩石样品破裂时带电现象的研究.//八十年代中国地球物理学进展. 北京: 学术书刊出版社, 1989: 204-209. Wang L H, Sun Z J, Chen H R. A research on electrification during rock fracturing.//Geophysics Advance in China in the Eighties (in Chinese). Beijing: Academic Books and Periodicals Press, 1989: 204-209.
[21] Nishizawa Osamu, Ishido Tsuneo, Lei X L. Charge of Electric Potential in Water-saturated Rock Compression. International Workshop on Electromagnetic Phenomena Related to Earthquake Prediction, 1993.
[22] Enomoto Y, Shimamoto T, Tsutumi A. Rapid Electric Charge Fluctuation prior to Rock Fracturing: Its Potential Use for an Immediate Earthquake Precursor. International Workshop on Electromagnetic Phenomena Related to Earthquake Prediction. 1993. 9.
[23] Takeuchi A, Lau B W S, Freund F T. Current and surlace potential induced by stress-activated positive holes in igneous rocks. Physics and Chemistry of the Earth, 2006, 31(4-9): 240-247.
[24] Eccles D, Sammonds P R, Glint O C. Laboratory studies of electrical potential during rock failure. International Journal of Roch Mechanics & Mining Sciences, 2005, 42(7-8): 933-949.
[25] 赵扬锋, 潘一山. 单轴压缩下花岗岩电磁信号的实验研究. 中国地质灾害与防治学报, 2009, 20(3): 132-137. Zhao Y F, Pan Y S. Study on the charge and magnetic signals of granite samples under uniaxial compression. Chinese Journal of Geological Hazard and Control (in Chinese), 2009, 20(3): 132-137, 141.
[26] 赵扬锋, 潘一山, 李国臻等. 岩石变形破裂过程中电荷感应信号的检测. 防灾减灾工程学报, 2010, 30(3): 252-256. Zhao Y F, Pan Y S, Li G Z, et al. Measuring of the charge-induced signals of rock during the deformation and fracture process. Journal of Disaster Prevention and Mitigation Engineering (in Chinese), 2010, 30(3): 252-256.
-
计量
- 文章访问数: 1305
- PDF下载数: 1575
- 施引文献: 0