Crustal structure and mantle transition zone thickness beneath the northeastern area of the North China Craton and adjacent region
-
摘要: 本文利用宽频流动台阵记录的远震波形资料和接收函数波动方程叠后偏移方法,获得了华北克拉通东北部边界及其邻近地区的地壳和地幔转换带的间断面结构图像.结果显示研究区域的地壳厚度存在显著的横向变化:以南北重力梯度带为界,西北部的兴蒙造山带地壳较厚(~40 km),东南部的燕山带、松辽盆地和辽东台隆地壳明显较薄(30~35 km).这有可能反映,研究区南北重力梯度带两侧地壳在中-新生代区域构造伸展过程中经历了不同程度的改造和减薄.地幔转换带成像结果显示,研究区410 km和660 km间断面结构存在横向差异.经度121°E-122°E之间,上地幔底部出现双重间断面,深度分别为660 km和690 km.经度122.5°E以东(北黄海地区),410 km间断面有5~20 km幅度的下沉,660 km间断面有5~15 km幅度的抬升;该地区地幔转换带厚度相对全球平均偏薄10~20 km,指示着该地区较热的上地幔底部温度环境.我们认为太平洋俯冲板块可能停滞在研究区119°E-122°E经度范围的地幔转换带中,但未延伸至118°E以西;而俯冲板块在124°E以东可能局部穿透了上地幔底部而进入下地幔,同时引起小尺度的地幔对流,导致北黄海地区下地幔物质的上涌.
-
关键词:
- 华北克拉通东北部边界及其邻区 /
- 接收函数 /
- 地壳厚度 /
- 410 km间断面 /
- 660 km间断面
Abstract: We apply a receiver function poststack migration method to teleseismic waveform data received by portable broadband stations, and obtain crustal and mantle transition zone structural image beneath the northeast boundary region of the North China Craton and adjacent areas. The result shows that the crustal thickness of our study region displays significant lateral variations. On the northwestern side of North-South Gravity lineament, the crust is thicker, averaging 38 km in Xingmeng orogenic belt, whereas in Yanshan belt, Songliao Basin and Liaodong anteclise, which locate on the southwestern side of North-South Gravity lineament(NSGL), the thickness of crust is much thinner (30~35 km). This feature probably indicates that the crust of the opposite sides of the NSGL might have been destructed and thinned to different degrees during late Mesozoic to Cenozoic. The structural image of mantle transition zone reveals some topographic lateral variations of the 410 km and 660 km discontinuities. Between longitude 121° and 122°, there are double discontinuities at depths of 660 km and 690 km. East of longitude 122.5°, the 410 km discontinuity depresses 5~20 km, and the 660 km discontinuity uplifts 5~15 km, resulting in a 10~20 km thinner than global average mantle transition zone which reflects a warm lower uppermantle environment. We suggest that the Pacific subducted slabs were trapped in mantle transition zone between longitude 119° and 122° and didn't reach the west of longitude 118°; With the increasing of slab materials in mantle transition zone, part of the slab might have sunk into the lower mantle to the east of longitude 124°, which would cause a small-scale convection and generate hot upwelling. -
-
[1] Ito E, Takahashi E. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J. Geophys. Res., 1989, 94(B8): 10637-10646.
[2] Ringwood A E. Composition and Petrology of the Earth's Mantle. New York: McGraw-Hill, 1975.
[3] Helffrich G. Topography of the transition zone seismic discontinuities. Rev. Geophys., 2000, 38(1): 141-158.
[4] Li X Q, Yuan X H. Receiver functions in northeast China-Implications for slab penetration into the lower mantle in northwest Pacific subduction zone. Earth Planet. Sci. Lett., 2003, 216(4): 679-691.
[5] Ai Y S, Zheng T Y, Xu W W, et al. A complex 660 km discontinuity beneath northeast China. Earth Planet. Sci. Lett., 2003, 212(1-2): 63-71.
[6] Huang J L, Zhao D P. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res., 2006, 111: B09305, doi:10.1029/2005JB004066.
[7] Fukao Y, Obayashi M, Inoue H, et al. Subducting slabs stagnant in the mantle transition zone. J. Geophys. Res., 1992, 97(B4): 4809-4822.
[8] Lei J S, Zhao D P. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics, 2005, 397(3-4): 281-295.
[9] Zhao D P, Tian Y, Lei J S, et al. Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab. Phys. Earth Planet. Inter., 2009, 173(3-4): 197-206.
[10] Shearer P M, Masters T G. Global mapping of topography on the 660 km discontinuity. Nature, 1992, 355(6363): 791-796.
[11] Tang Q S, Chen L. Structure of the crust and uppermost mantle of the Yanshan Belt and adjacent regions at the northeastern boundary of the North China Craton from Rayleigh Wave Dispersion Analysis. Tectonophysics, 2008, 455(1-4): 43-52.
[12] 危自根, 陈凌, 杨小林. 辽东台隆、燕山带和兴蒙造山带台站下方地壳厚度和平均波速比 (Vp/Vs) 的横向变化及其构造意义. 地球物理学报, 2011, 54(11): 2799-2808, doi:10.3969/j.issn.0001-5733.2011.11.010. Wei Z G, Chen L, Yang X L. Transverse variations of crustal thickness and Vp/Vs ratio under the stations in the Liaodong anteclise-Yanshan belt-Xingmeng orogenic belt and their tectonic implications. Chinese J. Geophys. (in Chinese), 2011, 54(11): 2799-2808, doi:10.3969/j.issn.0001-5733.2011.11.010.
[13] 李明明, 何玉梅. 利用瑞雷面波反演华北克拉通东北部边界的岩石圈结构. 地震学报, 2011, 33(2): 143-155. Li M M, He Y M. Lithospheric structure beneath northeastern boundary region of the North China Craton from Rayleigh wave dispersion inversion. Acta Seismologica Sinica (in Chinese), 2011, 33(2): 143-155.
[14] Chen L, Zheng T Y, Xu W W. Receiver function migration image of the deep structure in the Bohai Bay Basin, eastern China. Geophys. Res. Lett., 2006, 33(L20307), doi: 10. 1029/2006GL027593.
[15] 郑亚东, Davis G A, 王琮等. 燕山带中生代主要构造事件与板块构造背景问题. 地质学报, 2000, 74(4): 289-302. Zheng Y D, Davis G A, Wang C, et al. Major Mesozoic tectonic events in the Yanshan belt and the plate tectonic setting. Acta Geologica Sinica (in Chinese), 2000, 74(4): 289-302.
[16] 吴庆举, 曾融生. 用宽频带远震接收函数研究青藏高原的地壳结构. 地球物理学报, 1998, 41(5): 669-679. Wu Q J, Zeng R S. The crustal structure of Qinghai-Xizang plateau inferred from broadband teleseismic waveform. Chinese J. Geophys. (in Chinese), 1998, 41(5): 669-679.
[17] Ai Y S, Zheng T Y. The upper mantle discontinuity structure beneath eastern China. Geophys. Res. Lett., 2003, 30(21): 2089, doi:10.1029/ 2003GL017678.
[18] Kennett B L N, Engdahl E R. Traveltimes for global earthquake location and phase identification. Geophys. J. Int., 1991, 105(2): 429-465.
[19] Chen L, Wen L X, Zheng T Y. A wave equation migration method for receiver function imaging: 1. Theory. J. Geophys. Res., 2005, 110: B11309, doi:10.1029/2005JB003665.
[20] Chen L, Wen L X, Zheng T Y. A wave equation migration method for receiver function imaging: 2. Application to the Japan subduction zone. J. Geophys. Res., 2005, 110: B11310, doi:10.1029/ 2005JB003666.
[21] Zheng T Y, Chen L, Zhao L, et al. Crust-mantle structure difference across the gravity gradient zone in North China Craton: Seismic image of the thinned continental crust. Phys. Earth Planet. Inter., 2006, 159(1-2): 43-58.
[22] Wilson D, Aster R. Seismic imaging of the crust and upper mantle using regularized joint receiver functions, frequency-wave number filtering, and multimode Kirchhoff migration. J. Geophys. Res. 2005, 110(B05305), doi:10.1029/2004JB003430.
[23] Ai Y S, Zheng T Y, Xu W W, et al. Small scale hot upwelling near the North Yellow Sea of eastern China. Geophys. Res. Lett., 2008, 35(L20305), doi:10.1029/ 2008GL035269.
[24] Owens T J, Nyblade A A, Gurrola H, et al. Mantle transition zone structure beneath Tanzania, east Africa. Geophys. Res. Lett., 2000, 27(6): 827-830.
[25] Bina C R, Helffrich G R. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J. Geophys. Res., 1994, 99(B8): 15853-15860.
[26] Ai Y S, Shen Z Y. The crust and upper mantle structure beneath Bohai Sea inferred from receiver function study. Earthq. Sci., 2011, 24(1): 35-43.
[27] Vacher P, Mocquet A, Sotin C. Computation of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity. Phys. Earth Planet. Inter., 1998, 106(3-4): 275-298.
[28] Deuss A, Woodhouse J. Seismic observations of splitting of the mid-transition zone discontinuity in Earth's mantle. Science, 2001, 294(5541): 354-357.
[29] Saikia A, Frost D J, Rubie D C. Splitting of the 520-kilometer seismic discontinuity and chemical heterogeneity in the mantle. Science, 2008, 319(5869): 1515-1518.
[30] Zhang H F, Sun M, Zhou M F, et al. Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton: Evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks. Geol. Mag., 2004, 141(1): 55-62.
[31] Chen L. Lithospheric Structure variations between the eastern and central North China Craton from S- and P-receiver function migration. Phys. Earth Planet. Inter., 2009, 173(3-4): 216-227.
[32] Wei Z G, Chen L, Xu W W. Crustal thickness and Vp/Vs ratio of the central and western North China Craton and its tectonic implications. Geophys. J. Int., 2011, 186(2): 385-389.
-
计量
- 文章访问数:
- PDF下载数:
- 施引文献: 0