ZHU Wan-Hua,
DI Qing-Yun,
LIU Lei-Song et al
.2013.Development of search coil magnetometer based on magnetic flux negative feedback structure.Chinese Journal Of Geophysics,56(11): 3683-3689,doi: 10.6038/cjg20131109
Development of search coil magnetometer based on magnetic flux negative feedback structure
ZHU Wan-Hua1,3, DI Qing-Yun2, LIU Lei-Song1, YAN Bin1,3, LIU Kai1,3, FANG Guang-You1
1. Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences (CAS) Institute of Electronics, CAS, Beijing 100190, China; 2. Key Laboratory of Engineering Geomechanics, Chinese Academy of Sciences (CAS), Institute of Geology and Geophysics, CAS, Beijing 100029, China; 3. University of Chinese Academy of Sciences, Beijing 100039, China
Abstract:The search coil magnetometer (SCM) is a kind of magnetic sensors which is applied widely in oil and mineral explorations, earthquake monitoring, space research and so on. Also SCM is one of indispensable roles in EM exploration device. Funded by China's SinoProbe Plan, the SCM with high sensitivity for the Magnetotellurics (MT) is developed. In this article, the SCM with magnetic flux negative feedback structure is described. The chopper stabilized circuit is applied for removal of the 1/f noise in low frequency. The mu-metal core with high permeability increases the sensitivity of the SCM. The theoretical and test results show that the bandwidth of the SCM is from 1 m√HZ
to 1 k√HZ
, the noise level at 0.1 √HZ
is 1.5 pT/√HZ
, at 1 √HZ
is 0.15 pT/√HZ
, and at 10 √HZ
is 0.03 pT/√HZ
, respectively. The length of the SCM is 96 cm, diameter is 60 mm, and the weight is less than 6 kg. The SCM presented here can meet the demand of the magnetotellurics (MT) method.
[1] Tumanski S. Induction coil sensors—a review. Meas. Sci. Technol., 2007, 18(3): R31-R46. [2] Ripka P. Magnetic Sensors and Magnetometers. London: Artech House, 2001. [3] Deng M, Wei W B, Jin S, et al. Experimental verification and research for the distortion in the integrated frequency responses of the high-pressure sealed cabin and magnetic field sensor. Earth Science (Journal of China University of Geosciences), 2007, 18(4): 310-319. [4] 邓明, 魏文博, 张文波等. 激励及地电条件与天然气水合物的电偶源电场响应. 石油勘探与开发, 2010, 37(4): 438-442. Deng M, Wei W B, Zhang W B, et al. Electric field responses of different gas hydrate models excited by a horizontal electric dipole source with changing arrangements. Petroleum Exploration and Development (in Chinese), 2010, 37(4): 438-442. [5] Tumanski S. Handbook of Magnetic Measurements (Series in Sensors). New York: CRC Press, 2011. [6] Lebourgeois R, Coillot C. Mn-Zn ferrites for magnetic sensor in space applications. J. Appl. Phys., 2008, 103(07E510): 1-4. [7] 滕吉文. 中国地球物理仪器和实验设备研究与研制的发展与导向. 地球物理学进展, 2005, 20(2): 276-281. Teng J W. The development and guide direction of Research and manufacture of Geophysical instruments and experimental equipments in China. Progress in Geophysics (in Chinese), 2005, 20(2): 276-281. [8] 巨汉基, 朱万华, 方广有. 磁芯感应线圈传感器综述. 地球物理学进展, 2010, 25(5): 1870-1876. Ju H J, Zhu W H, Fang G Y. A review on ferromagnetic induction coil sensors. Progress in Geophysics (in Chinese), 2010, 25(5): 1870-1876. [9] 邓明, 魏文博, 谭捍东等. 海底大地电磁数据采集器, 地球物理学报, 2003, 46(2): 217-223. Deng M, Wei W B, Tan H D, et al. Collector for Seafloor Magnetotelluric data. Chinese Journal of Geophysics (in Chinese), 2003, 46(2): 217-223. [10] 邓明, 杜刚, 张启升等. 海洋大地电磁场的特征与测量技术. 仪器仪表学报, 2004, 25(6): 742-746. Deng M, Du G, Zhang Q S, et al. The characteristic and prospecting technology of the marine magnetotelluric field. Chinese Journal of Scientific Instrument (in Chinese), 2004, 25(6): 742-746. [11] 魏文博. 我国大地电磁探测新进展及瞻望,地球物理学进展, 2002, 17(2):245-254. Wei W B. New Advance and prospect of magnetotelluric sounding (MT) in China. Progress in Geophysics, 2002, 17 (2):245-254. [12] MFS-06e magnetic senors http://178.63.62.205/mtxgeo/images/brochures/FlyerMFS-06e_cn_v33.pdf, 2011 [13] MTC-80 induction coils senors http://www.phoenix-geophysics.com/products/sensors/?, 2011 [14] Prance R J, Clark T D, Prance H. Compact room-temperature induction magnetometer with superconducting quantum interference device level field sensitivity. Rev. Sci. Inst., 2003, 74(8): 3735-3740. [15] Prance R J, Clark T D, Prance H. Ultra low noise induction magnetometer for variable temperature operation. Sens. Actu., 2000, 85(1-3): 361-364. [16] Séran H C, Fergeau P. An optimized low-frequency three-axis search coil magnetometer for space research. Rev. Sci. Inst., 2005, 76(4): 1-10. [17] Le Contel O, Roux A, Robert P, et al. First results of the THEMIS search coil magnetometers. Space Sci Rev., 2008, 141(1-4): 509-534. [18] Lebourgeois R, Coillot C. Mn-Zn ferrites for magnetic sensor in space applications. J. Appl. Phy., 2008, 103(7): 07E510-07E510-3. [19] Paperno E, Grosz A. A miniature and ultralow power search coil optimized for a 20 mHz to 2 kHz frequency range. J. Appl. Phys., 2009, 105(7): E7708-E7708. [20] Grosz A, Paperno E, Amrusi S, et al. A Three-Axial Search Coil Magnetometer Optimized for Small Size, Low Power, and Low Frequencies. IEEE Sens. J., 2011, 11(4): 1088-1095. [21] 陈兴朋, 宋刚, 周胜等. 音频大地电磁磁场传感器的研制. 中国有色金属学报, 2012, 22(3): 1-6. Chen X P, Song G, Zhou S, et al. Development of magnetic sensor in audio-frequency magnetotelluric sounding. The Chinese Journal of Nonferrous Metals (in Chinese), 2012, 22(3): 1-6. [22] 王言章, 程德福, 王君等. 基于纳米晶合金的宽频差分式磁场传感器的研制的研究. 传感技术学报, 2007, 20(9), 1967-1969. Wang Y Z, Cheng D F, Wang J, et al. Research of broad frequency difference magnetic field sensor based on nanocrystalline alloy. Chinese Journal of Sensors and Actuators (in Chinese), 2007, 20(9): 1967-1969.