LI Bo,
HAN TongCheng,
FU LiYun
.2020.Dielectric properties of fractured reservoir sandstones based on digital rock physics technique Chinese Journal of Geophysics(in Chinese),63(12): 4578-4591,doi: 10.6038/cjg2020O0026
Dielectric properties of fractured reservoir sandstones based on digital rock physics technique
LI Bo1, HAN TongCheng1,2, FU LiYun1,2
1. School of Geosciences, China University of Petroleum(East China), Qingdao Shandong 266580, China; 2. Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao Shandong 266071, China
Abstract:Understanding the dielectric properties of reservoir rocks has significant applications in all aspects of the petroleum industry. Small-scale fractures are one of the geological factors that affect the dielectric properties of rocks. Obtaining the quantitative relationship of the influence of fractures on the dielectric properties of fractured rocks has important theoretical and practical significance. Based on the three-dimensional microscopic digital structure of artificial sandstone with fractures, the validity of the numerical calculation method is verified by comparing the dielectric properties of the rock calculated based on the three-dimensional finite-difference algorithm with the experimental data. The dielectric properties of the matrix (i.e., the rock without fractures) with various porosities are then determined using the multiphase incremental model, the validity of which is tested using the measured results of the unfractured sample. Finally, fractures with varying crack density and aspect ratio are artificially added into the CT structure of the matrix to form new fractured rocks, and their dielectric properties are simulated using the validated three-dimensional finite-difference model. The results show that the influences of fractures on the dielectric properties of the sandstone increase with the decrease of porosity of the sandstone matrix, and the dielectric properties of the fractured sandstone are positively correlated with fracture density and fracture aspect ratio when fracture porosity changes with fracture density or fracture aspect ratio. However, the dielectric properties of the fractured sandstone increase with the decrease of fracture aspect ratio as fracture porosity unchanged. The variation of the fractures impacts the dielectric properties of the fractured rocks with varying matrix porosity in a similar trend, but the amount of the impact increases with decreasing matrix porosity. The research results of the influence of fracture parameters and matrix porosity on the dielectric properties of fractured sandstones provide a basis for the quantitative characterization of fractured oil and gas reservoirs based on dielectric properties, and have important application prospects in oil and gas exploration and development.
Asami K. 2002. Characterization of heterogeneous systems by dielectric spectroscopy. Progress in Polymer Science, 27(8):1617-1659, doi:10.1016/S0079-6700(02)00015-1. Asami K. 2005. Simulation of dielectric relaxation in periodic binary systems of complex geometry. Journal of Colloid and Interface Science, 292(1):228-235, doi:10.1016/j.jcis.2005.05.076. Asami K. 2006. Dielectric dispersion in biological cells of complex geometry simulated by the three-dimensional finite difference method. Journal of Physics D:Applied Physics, 39(3):492-499, doi:10.1088/0022-3727/39/3/012. Calame J P. 2003. Evolution of Davidson-Cole relaxation behavior in random conductor-insulator composites. Journal of Applied Physics, 94(9):5945, doi:10.1063/1.1615302. Chelidze T L, Gueguen Y, Ruffet C. 1999. Electrical spectroscopy of porous rocks:a review-II. Experimental results and interpretation. Geophysical Journal International, 137(1):16-34, doi:10.1046/j.1365-246x.1999.00800.x. Ding P B, Di B R, Wei J X, et al. 2015. Experimental research on the effects of crack density based on synthetic sandstones contain controlled fractures. Chinese Journal of Geophysics (in Chinese), 58(4):1390-1399, doi:10.6038/cjg20150425. Ding P B, Di B R, Wang D, et al. 2017. Measurements of seismic anisotropy in synthetic rocks with controlled crack geometry and different crack densities. Pure and Applied Geophysics, 174(5):1907-1922, doi:10.1007/s00024-017-1520-3. Feng C, Mao Z Q, Yin W, et al. 2017. Study on resistivity experiments and conductive mechanism in low-permeability reservoirs with complex wettability. Chinese Journal of Geophysics (in Chinese), 60(3):1211-1220, doi:10.6038/cjg20170331. Feng Q N, Li X M, Zheng H H. 1995. A laboratory research of rock's complex permittivity from 1 kHz to 15 MHz. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 38(1):331-336. Gao J, Liu C Q, Wan J B. 2012. Effect factors on critical angle of dual laterolog responses in fractured reservoir. Well Logging Technology (in Chinese), 36(5):456-459, doi:10.3969/j.issn.1004-1338.2012.05.004. Guo C, Zheng J, Liu R C, et al. 2018. Effect of microgeometry on the electrical properties of rocks.//88th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 1278-1281, doi:10.1190/IGC2018-313. Han T C, Ben Clennell M, Josh M, et al. 2015. Determination of effective grain geometry for electrical modeling of sedimentary rocks. Geophysics, 80(4):D319-D327, doi:10.1190/geo2014-0504.1. Han T C, Yang Y S. 2018. Numerical and theoretical simulations of the dielectric properties of porous rocks. Journal of Applied Geophysics, 159:186-192, doi:10.1016/j.jappgeo.2018.08.014. Han T C, Josh M, Liu H Q. 2019a. Effects of aligned fractures on the dielectric properties of synthetic porous sandstones. Journal of Petroleum Science and Engineering, 172:436-442, doi:10.1016/j.petrol.2018.09.093. Han T C, Yang S. 2019b. Dielectric properties of fractured carbonate rocks from finite-difference modeling. Geophysics, 84(1):MR37-MR44, doi:10.1190/GEO2018-0003.1. Huang X G, Huang X G, Bai W M. 2010. Progress of high temperature and high pressure experimental study on the electrical conductivity of the minerals and rocks. Progress in Geophysics (in Chinese), 25(4):1247-1258, doi:10.3969/j.issn.1004-2903.2010.04.013. Huang X G, Wang X X, Chen Z A, et al. 2017. The experimental research on electrical conductivity for minerals and rocks under condition of upper mantle. Scientia Sinica Terrae (in Chinese), 47(5):518-529, doi:10.1360/N072016-00305. Ju X D, Zhao H L, Lu J Q, et al. 2015. Research of the acoustoelectric logging tool. Well Logging Technology (in Chinese), 39(3):323-329, doi:10.16489/j.issn.1004-1338.2015.03.012. Ke S Z. 2010. Frequency-swept measurement of electrical parameters of rock. Progress in Geophysics (in Chinese), 25(2):512-515, doi:10.3969/j.issn.1004-2903.2010.02.018. Knight R J, Nur A. 1987. The dielectric constant of sandstones, 60 kHz to 4 MHz. Geophysics, 52(5):644-654, doi:10.1190/1.1442332. Lee M W, Collett T S. 2009. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India. Journal of Geophysical Research:Solid Earth, 114(B7):B07102, doi:10.1029/2008JB006237. Liu S B, Han T C, Hu G W, et al. 2020. Dielectric behaviors of marine sediments for reliable estimation of gas hydrate saturation based on numerical simulation. Journal of Natural Gas Science and Engineering, 73:103065, doi:10.1016/j.jngse.2019.103065. Liu X, Zhu H, Li L. 2014. Digital rock physics of sandstone based on micro-CT technology. Chinese Journal of Geophysics (in Chinese), 57(4):1133-1140, doi:10.6038/cjg20140411. Liu X F, Sun J M, Wang H T. 2009. Numerical simulation of rock electrical properties based on digital cores. Applied Geophysics, 6(1):1-7, doi:10.1007/s11770-009-0001-6. Lockner D A, Byerlee J D. 1985. Complex resistivity measurements of confined rock. Journal of Geophysical Research:Solid Earth, 90(B9):7837-7847, doi:10.1029/JB090iB09p07837. Maxwell J C. 1891. Treatise on Electricity and Magnetism. Oxford:Clarendon Press. Molina E, Arancibia G, Sepúlveda J, et al. 2019. Digital rock approach to model the permeability in an artificially heated and fractured granodiorite from the Liquiñe geothermal system (39°S). Rock Mechanics and Rock Engineering, 53(3):1179-1204, doi:10.1007/s00603-019-01967-6. Moss A K, Jing X D, Archer J S. 2002. Wettability of reservoir rock and fluid systems from complex resistivity measurements. Journal of Petroleum Science and Engineering, 33(1-3):75-85, doi:10.1016/S0920-4105(01)00177-2. Mustapha H, Makromallis K, Cominelli A. 2019. An efficient hybrid-grid crossflow equilibrium model for field-scale fractured reservoir simulation. Computational Geosciences, 24(2):477-492, doi:10.1007/s10596-019-09838-3. Norbisrath J H, Weger R J, Eberli G P. 2017. Complex resistivity spectra and pore geometry for predictions of reservoir properties in carbonate rocks. Journal of Petroleum Science and Engineering, 151:455-467, doi:10.1016/j.petrol.2016.12.033. Pan B Z, Liu S H, Huang B Z, et al. 2016. Application of the CEC ratio method in evaluation of tuffaceous sandstone reservoirs:an example in the X depression of Hailar-Tamtsag basin. Chinese Journal of Geophysics (in Chinese), 59(5):1920-1926, doi:10.6038/cjg20160534. Pan B Z, Fang C H, Guo Y H, et al. 2018. Logging evaluation and productivity prediction of Sulige tight sandstone reservoirs based on petrophysics transformation models. Chinese Journal of Geophysics (in Chinese), 61(12):5115-5124, doi:10.6038/cjg2018L0724. Popov Y, Tertychnyi V, Romushkevich R, et al. 2003. Interrelations between thermal conductivity and other physical properties of rocks:experimental data. Pure and Applied Geophysics, 160(5-6):1137-1161, doi:10.1007/PL00012565. Scott J H, Carroll R D, Cunningham D R. 1967. Dielectric constant and electrical conductivity measurements of moist rock:A new laboratory method. Journal of Geophysical Research, 72(20):5101-5115, doi:10.1029/JZ072i020p05101. Shao T B, Ji S C, Li J F, et al. 2011. Paterson gas-medium high-pressure high-temperature testing system and its applications in rheology of rocks. Geotectonica et Metallogenia, 35(3):457-476, doi:10.3969/j.issn.1001-1552.2011.03.016. Shuai D, Wei J X, Di B R, et al. 2019. Physical modeling of the influence of crack density on the accuracy of effective medium theory. Chinese Journal of Geophysics (in Chinese), 62(7):2697-2710, doi:10.6038/cjg2019M0303. Vernik L, Nur A. 1992. Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics, 57(5):727-735, doi:10.1190/1.1443286. Von Hipel A R. 1954. Dielectric Materials and their Applications. The Technology Press of M. I. T., United States of America. Wagner K W. 1914. Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen. Archiv für Elektrotechnik, 2(9):371-387, doi:10.1007/BF01657322. Wei J X. 2002. A physical model study of different crack densities. Geophysical Prospecting for Petroleum (in Chinese), 41(4):433-438, doi:10.3969/j.issn.1000-1441.2002.04.011. Yang Y S, Tulloh A, Clennell B. 2015. A DCM Plug-in for Microstructure-Based Computation of Material Sample Electric Conductivity and Permittivity. CSIRO Data Access Portal. doi:10.4225/08/59e5936b181c7. Yang Y S, Trinchi A, Tulloh A, et al. 2016. A tutorial introduction to DCM quantitative characterization and modelling of material microstructures using monochromatic multi-energy X-Ray CT. AIP Conference Proceedings, 1696(1):020029. Yang Y S, Chu C, Tulloh A. 2017. DCM-a software platform for advanced 3D materials modelling, characterisation and visualization. CSIRO Data Access Porta. doi:10.25919/5f6ea95ed512c. Yu Z C, Liu L, Yang S Y, et al. 2012. An experimental study of CO2-brine-rock interaction at in situ pressure-temperature reservoir conditions. Chemical Geology, 326-327:88-101, doi:10.1016/j.chemgeo.2012.07.030. Zhao C G, Li Y, Wang L, et al. 2014. Research on core dielectric experiment in sand shale profile. Petroleum Instruments (in Chinese), 28(6):57-59, doi:10.3969/j.issn.1004-9134.2014.06.018. 附中文参考文献 丁拼搏, 狄帮让, 魏建新等. 2015. 利用含可控裂缝人工岩样研究裂缝密度对各向异性的影响. 地球物理学报, 58(4):1390-1399, doi:10.6038/cjg20150425. 冯程, 毛志强, 殷文等. 2017. 低渗透复杂润湿性储层电阻率实验及导电机理研究. 地球物理学报, 60(3):1211-1220, doi:10.6038/cjg20170331. 冯启宁, 李晓明, 郑和华. 1995.1 kHz-15 MHz岩石介电常数的实验研究. 地球物理学报, 38(1):331-336. 高杰, 刘传奇, 万金彬. 2012. 裂缝性储层双侧向测井响应临界角影响因素分析. 测井技术, 36(5):456-459, doi:10.3969/j.issn.1004-1338.2012.05.004. 黄小刚, 黄晓葛, 白武明. 2010. 高温高压下矿物岩石电导率的实验研究进展. 地球物理学进展, 25(4):1247-1258, doi:10.3969/j.issn.1004-2903.2010.04.013. 黄晓葛, 王欣欣, 陈祖安等. 2017. 上地幔矿物和岩石电导率的实验研究. 中国科学:地球科学, 47(5):518-529, doi:10.1360/N072016-00305. 鞠晓东, 赵宏林, 卢俊强等. 2015. 声电测井仪研究. 测井技术, 39(3):323-329, doi:10.16489/j.issn.1004-1338.2015.03.012. 柯式镇. 2010. 岩石电学参数扫频测量. 地球物理学进展, 25(2):512-515, doi:10.3969/j.issn.1004-2903.2010.02.018. 刘向君,朱洪林,梁利喜.2014.基于微CT技术的砂岩数字岩石物理实验.地球物理学报,57(4):1133-1140,doi:10.6038/cjg20140411. 潘保芝, 刘思慧, 黄布宙等. 2016. CEC比值法在凝灰质砂岩储层测井评价中的应用——以海-塔盆地X凹陷凝灰质砂岩储层为例. 地球物理学报, 59(5):1920-1926, doi:10.6038/cjg20160534. 潘保芝, 房春慧, 郭宇航等. 2018. 基于岩石物理转换模型的苏里格致密砂岩储层测井评价与产能预测. 地球物理学报, 61(12):5115-5124, doi:10.6038/cjg2018L0724. 邵同宾,嵇少丞,李建峰等.2011.Paterson高温高压流变仪及其在岩石流变学中的应用.大地构造与成矿学,35(3):457-476,doi:10.3969/j.issn.1001-1552.2011.03.016. 帅达, 魏建新, 狄帮让等. 2019. 等效介质理论中裂缝密度的适用性研究. 地球物理学报, 62(7):2697-2710, doi:10.6038/cjg2019M0303. 魏建新. 2002. 不同裂缝密度的物理模型研究. 石油物探, 41(4):433-438, doi:10.3969/j.issn.1000-1441.2002.04.011. 赵成刚, 李阳, 王磊等. 2014. 砂泥岩剖面岩心介电实验研究. 石油仪器, 28(6):57-59, doi:10.3969/j.issn.1004-9134.2014.06.018.