LI WenHan,
LIU Bin,
LI ShuCai et al
.2020.Study on multi-resolution imaging method of urban underground space based on high performance transient electromagnetic source Chinese Journal of Geophysics(in Chinese),63(12): 4553-4564,doi: 10.6038/cjg2020O0310
Study on multi-resolution imaging method of urban underground space based on high performance transient electromagnetic source
LI WenHan1, LIU Bin1, LI ShuCai1, LI He2, LU KaiLiang2, LI Xiu2
1. School of Qilu Transportation, Shandong University, Jinan 250061, China; 2. College of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China
Abstract:High-precision and multi-scale detection of urban underground space is the prerequisite for the rational development of urban underground. Due to the particularity of the urban detection environment, the detection method needs to have the characteristics of strong anti-interference ability, good resolution ability and differentiation of multi-scale underground targets. The existing geophysical methods cannot meet the needs of urban underground space detection. In this paper, the scales of underground targets vary greatly in urban underground space, and traditional transient electromagnetic methods (TEM) are difficult to distinguish the multi-scale targets. As an effective forward modeling method, the three-dimensional vector finite element method can analyze the emission characteristics of TEM. In the previous article, the author discussed in detail the emission characteristics of transient electromagnetic high-performance radiation sources, and used transient electromagnetic differential pulses for pulse scanning detection, and demonstrated the effectiveness of differential pulse scanning detection by comparison. This paper performs the wave-field transformation by multi-windows scanning on the detection data after the differential pulse-scanning detection. The wave-field transformation by window scanning is an important method to improve the resolution of detection. The window scanning can highlight the response of the corresponding depth and scale. By changing the size of the window, the response of different depths and scales can be highlighted, and multi-scale information extraction can be realized. In order to improve the resolution of the wave-field, the multiple coverage technology is used to process the wave-field. Finally, pseudo-seismic migration imaging is performed on the wave-field after multiple superposition to realize high-precision detection of urban underground space. In summary, with the assistance of high-performance transient electromagnetic radiation sources and multi-resolution pulse scanning technology, the wave-field conversion is improved accordingly. While enhancing the detection information, the multi-resolution response information is extracted to improve the resolution. However, the structure and material of the urban underground are complicated, the corresponding electrical parameters and electromagnetic field velocity are relatively complicated, and further research is needed for the velocity analysis of the wave-field; secondly, the calculation stability of the wave field transformation needs to be further strengthened. The solution method of the wave-field transformation equation needs to be further improved to make sure the stability of the calculation; finally, the imaging method using the combination of apparent resistivity and migration imaging is the future research after this article.
Bai H, Sinfield J V. 2020. Improved background and clutter reduction for pipe detection under pavement using Ground Penetrating Radar (GPR). Journal of Applied Geophysics, 172:103918, doi:10.1016/j.jappgeo.2019.103918. Bobylev N. 2010. Underground space in the alexanderplatz area, Berlin:research into the quantification of urban underground space use. Tunnelling and Underground Space Technology, 25(5):495-507, doi:10.1016/j.tust.2010.02.013. Chen H S. 2007. Points of the four problems in pipeline detecting. Geotechnical Investigation & Surveying (in Chinese), (7):62-670. Di Q Y, Zhu R X, Xue G Q, et al. 2019. New development of the Electromagnetic (EM) methods for deep exploration. Chinese Journal of Geophysics (in Chinese), 62(6):2128-2138, doi:10.6038/cjg2019M0633. Gurbuz A C, McClellan J H, Scott W R. 2009. A compressive sensing data acquisition and imaging method for stepped frequency GPRS. IEEE Transactions on Signal Processing, 57(7):2640-2650, doi:10.1109/TSP.2009.2016270. Hao L S, Xu X L, Peng S P, et al. 2016. Development and application of a novel combined low-frequency antenna for ultra-deep advanced detection in mine.//Proceedings of the 2016 16th International Conference on Ground Penetrating Radar. Hong Kong, China:IEEE. Hong W T, Kang S, Lee S J, et al. 2018. Analyses of GPR signals for characterization of ground conditions in urban areas. Journal of Applied Geophysics, 152:65-76, doi:10.1016/j.jappgeo.2018.03.005. Hunt D V L, Makana L O, Jefferson I, et al. 2016. Liveable cities and urban underground space. Tunnelling and Underground Space Technology, 55:8-20, doi:10.1016/j.tust.2015.11.015. Lee K H, Liu G, Morrison H F. 1989. A new approach to modeling the electromagnetic response of conductive media. Geophysics, 54(9):1180-1192, doi:10.1190/1.1442753. Lee K H, Xie G Q. 1993. A new approach to imaging with low-frequency electromagnetic fields. Geophysics, 58(6):780-796, doi:10.1190/1.1443464. Li J H, Hu X Y, Zeng S H, et al. 2013. Three-dimensional forward calculation for loop source transient electromagnetic method based on electric field Helmholtz equation. Chinese Journal of Geophysics (in Chinese), 56(12):4256-4267, doi:10.6038/cjg20131228. Li W H, Li H, Lu K L, et al. 2018. A new method for space-based detecting small-scale space debris with high-resolution using transient electromagnetism. Chinese Journal of Geophysics (in Chinese), 61(12):5066-5076, doi:10.6038/cjg2018M0022. Li W H, Lu K L, Li H, et al. 2018. New multi-resolution and multi-scale electromagnetic detection methods for urban underground spaces. Journal of Applied Geophysics, 159:742-753, doi:10.1016/j.jappgeo.2018.09.034. Li W H, Li H, Lu K K, et al. 2019. Multi-scale target detection for underground spaces with transient electromagnetics based on differential pulse scanning. Journal of Environmental and Engineering Geophysics, 24(4):593-607, doi:10.2113/JEEG24.4.593. Li X, Xue G Q, Song J P, et al. 2005. An optimize method for transient electromagnetic field-wave field conversion. Chinese Journal of Geophysics (in Chinese), 48(5):1185-1190, doi:10.3321/j.issn:0001-5733.2005.05.029. Persico R, Dei D, Parrini F, et al. 2016. Mitigation of narrowband interferences by means of a Reconfigurable stepped frequency GPR system. Radio Science, 51(8):1322-1331, doi:10.1002/2016RS005986. Qi Z P, Li X, Wu Q, et al. 2013. A new algorithm for full-time-domain wave-field transformation based on transient electromagnetic method. Chinese Journal of Geophysics (in Chinese), 56(10):3581-3595, doi:10.6038/cjg20131033. Qian Q H. 2000. Modern technology of underground space development and utilization in city and its developing trend. Railway Construction Technology (in Chinese), (5):1-6, doi:10.3969/j.issn.1009-4539.2000.05.001. Qian Q H. 2013. Underground urban complexes development in China.//Advances in Underground Space Development. Seyfried D, Schoebel J. 2015. Stepped-frequency radar signal processing. Journal of Applied Geophysics, 112:42-51, doi:10.1016/j.jappgeo.2014.11.003. Tengborg P, Sturk R. 2016. Development of the use of underground space in Sweden. Tunnelling and Underground Space Technology, 55:339-341, doi:10.1016/j.tust.2016.01.002. Xia J H, Gao L L, Pan Y D, et al. 2015. New findings in high-frequency surface wave method. Chinese Journal of Geophysics (in Chinese), 58(8):2591-2605, doi:10.6038/cjg20150801. Xu X L, Peng S P, Yang F. 2018. Development of a ground penetrating radar system for large-depth disaster detection in coal mine. Journal of Applied Geophysics, 158:41-47, doi:10.1016/j.jappgeo.2018.07.006. Xue G Q, Li X, Song J P, et al. 2004. Theoretical analysis and numerical calculation of loop-source transient electromagnetic imaging. Chinese Journal of Geophysics (in Chinese), 47(2):338-343, doi:10.3321/j.issn:0001-5733.2004.02.023. Xue G Q, Yan Y J, Li X. 2007. Pseudo-seismic wavelet transformation of transient electromagnetic response in engineering geology exploration. Geophysical Research Letters, 34(16):L16405, doi:10.1029/2007GL031116. Xue G Q, Li X, Qi Z P, et al. 2011. Study of sharpening the TEM pseudo-seismic wave-form. Chinese Journal of Geophysics (in Chinese), 54(5):1384-1390, doi:10.3969/j.issn.0001-5733.2011.05.028. Xue G Q, Bai C Y, Li X. 2012. Extracting the virtual Refiected wavelet from tem data based on regularizing method. Pure and Applied Geophysics, 169(7):1269-1282, doi:10.1007/s00024-011-0392-1. Yin X F, Xu H R, Xia J H, et al. 2018. A travel-time tomography method for improving horizontal resolution of high-frequency surface-wave exploration. Chinese Journal of Geophysics (in Chinese), 61(6):2380-2395, doi:10.6038/cjg2018L0373. Zhao P, Jiang J, Wang X R. 2017. Urban underground space exploration key technologies and development trend. Coal Geology of China (in Chinese), 29(9):61-66, 73, doi:10.3969/j.issn.1674-1803.2017.09.12. 附中文参考文献 陈穗生. 2007. 管线探测四大难题的探测要点. 工程勘察, (7):62-67. 底青云, 朱日祥, 薛国强等. 2019. 我国深地资源电磁探测新技术研究进展. 地球物理学报, 62(6):2128-2138, doi:10.6038/cjg2019M0633. 李建慧, 胡祥云, 曾思红等. 2013. 基于电场Helmholtz方程的回线源瞬变电磁法三维正演. 地球物理学报, 56(12):4256-4267, doi:10.6038/cjg20131228. 李文翰, 李贺, 鲁凯亮等. 2018. 一种基于天基的瞬变电磁高分辨探测小尺度太空碎片的方法. 地球物理学报, 61(12):5066-5076, doi:10.6038/cjg2018M0022. 李貅, 薛国强, 宋建平等. 2005. 从瞬变电磁场到波场的优化算法. 地球物理学报, 48(5):1185-1190, doi:10.3321/j.issn:0001-5733.2005.05.029. 戚志鹏, 李貅, 吴琼等. 2013. 从瞬变电磁扩散场到拟地震波场的全时域反变换算法. 地球物理学报, 56(10):3581-3595, doi:10.6038/cjg20131033. 钱七虎. 2000. 现代城市地下空间开发利用技术及其发展趋势. 铁道建筑技术, (5):1-6. doi:10.3969/j.issn.1009-4539.2000.05.001. 夏江海, 高玲利, 潘雨迪等. 2015. 高频面波方法的若干新进展. 地球物理学报, 58(8):2591-2605, doi:10.6038/cjg20150801. 徐永健, 阎小培. 2000. 城市地下空间利用的成功实例——加拿大蒙特利尔市地下城的规划与建设. 城市问题, (6):56-58. 薛国强, 李貅, 宋建平等. 2004. 回线源瞬变电磁成像的理论分析及数值计算. 地球物理学报, 47(2):338-343, doi:10.3321/j.issn:0001-5733.2004.02.023. 薛国强, 李貅, 戚志鹏等. 2011. 瞬变电磁拟地震子波宽度压缩研究. 地球物理学报, 54(5):1384-1390, doi:10.3969/j.issn.0001-5733.2011.05.028. 尹晓菲, 胥鸿睿, 夏江海等. 2018. 一种基于层析成像技术提高浅地表面波勘探水平分辨率的方法. 地球物理学报, 61(6):2380-2395, doi:10.6038/cjg2018L0373. 赵镨, 姜杰, 王秀荣. 2017. 城市地下空间探测关键技术及发展趋势. 中国煤炭地质, 29(9):61-66, 73, doi:10.3969/j.issn.1674-1803.2017.09.12.