WANG Bin,
CHEN XiangZhong,
CHEN Juan et al
.2020.Elastic characteristics and petrophysical modeling of the Jurassic tight sandstone in Sichuan Basin Chinese Journal of Geophysics(in Chinese),63(12): 4528-4539,doi: 10.6038/cjg2020O0346
Elastic characteristics and petrophysical modeling of the Jurassic tight sandstone in Sichuan Basin
WANG Bin1, CHEN XiangZhong2, CHEN Juan1, YAO Jun1, TAN KaiJun1
1. Petrochina Research Institute of Petroleum Exploration and Development, Lanzhou 730020, China; 2. Beijing Orangelamp Geophysical Exploration Company Limited, Beijing 102200, China
Abstract:In recent years, a breakthrough has been made in the hydrocarbon exploration of the Jurassic continental tight sandstone in Sichuan Basin. It has clarified that the transition zone between central and Western Sichuan has the geological conditions to form large-scale gas fields. However, there are few studies on the elastic properties of this set of tight sandstone, resulting in the low accuracy of "sweet spot" reservoir prediction using seismic methods. To solve this problem, this study uses 32 samples from the Jurassic Shaximiao Formation in the Sichuan Basin to conduct a systematic acoustic measurement, based on which the change pattern of seismic elastic properties of the samples are analyzed. The effects of different diagenesis on rock reservoir performance are determined by integrating X-ray diffraction mineral composition analysis, scanning electron microscopy, and thin section characteristics of castings and rocks. Results show that the tight sandstone reservoirs in the study area behave like a porous type, and is affected by differential diagenesis. The differences in clay, calcium and silica contents as well as their different distribution characteristics have a great impact on the elastic properties of rocks. The early calcitic cementation as well as the compaction and dissolution with intense plastic clastic particles has significant impact on the rock porosities and seismic elastic properties in the study area. Therefore, the petrophysial model of the tight sandstone in the study area is established by using a contact-cementation model, differential equivalent modulus model and the Hashin-Shtrikman upper bounds for critical porosity correction, respectively.
Cai X Y, Liu J L, Zhao P R, et al. 2020. Oil and gas exploration[FL)] progress and upstream development strategy of Sinopec. China Petroleum Exploration (in Chinese), 25(1):11-19, doi:10.3969/j.issn.1672-7703.2020.01.002. Cao X C, Chang S Y, Li L S, et al. 2019. Seismic petrophysical modeling and application of carbonate porous reservoir. Progress in Geophysics (in Chinese), 34(6):2239-2246, doi:10.6038/pg2019CC0389. Dai J X, Ni Y Y, Wu X Q. 2012. Tight gas in China and its significance in exploration and exploitation. Petroleum Exploration and Development (in Chinese), 39(3):257-264. Deng J X, Tang Z Y, Li Y, et al. 2018. The influence of the diagenetic process on seismic rock physical properties of Wufeng and Longmaxi Formation shale. Chinese Journal of Geophysics (in Chinese), 61(2):659-672, doi:10.6038/cjg2018L0062. Dvorkin J. 1996. Large strains in cemented granular aggregates:Elastic-plastic cement. Mechanics of Materials, 23(1):29-44. French M W, Worden R H, Mariani E, et al. 2012. Microcrystalline quartz generation and the preservation of porosity in sandstones:evidence from the Upper Cretaceous of the Subhercynian basin, Germany. Journal of Sedimentary Research, 82(7):422-434. Han D H, Nur A, Morgan D. 1986. Effects of porosity and clay content on wave velocities in sandstone. Geophysics, 51(11):2093-2107. Kowallis B J, Jones L E, Wang H F. 1984. Velocity-porosity-clay content systematics of poorly-consolidated sandstones. Journal of Geophysical Research:Solid Earth, 89(B12):10355-10364. Kuang Y, Sima L Q, Qu J H, et al. 2017. Influencing factors and quantitative evaluation for pore structure of tight glutenite reservoir:a case of the Triassic Baikouquan Formation in Ma 131 well field, Mahu Sag. Lithologic Reservoirs (in Chinese), 29(4):91-100, doi:10.3969/j.issn.1673-8926.2017.04.011. Lai J, Wang G W, Wang S N, et al. 2013. Research status and advances in the diagenetic facies of clastic reservoirs. Advances in Earth Science (in Chinese), 28(1):39-50. Li L G, He H Q, Fan T Z, et al. 2020. Oil and gas exploration progress and upstream development strategy of CNPC. China Petroleum Exploration (in Chinese), 25(1):1-10, doi:10.3969/j.issn.1672-7703.2020.01.001. Lin C M, Zhang X, Zhou J, et al. 2011. Diagenesis characteristics of the reservoir sandstones in Lower Shihezi Formation from Daniudi gas field, Ordos basin. Advances in Earth Science (in Chinese), 26(2):212-223. Luo J L, Liu X S, Fu X Y, et al. 2014. Impact of petrologic components and their diagenetic evolution on tight sandstone reservoir quality and gas yield:a case study from He 8 Gas-bearing reservoir of Upper Paleozoic in northern Ordos basin. Earth Science-Journal of China University of Geosciences (in Chinese), 39(5):537-545, doi:10.3799/dqkx.2014.051. Luo J L, Wei X S, Yao J L, et al. 2010. Provenance and depositional facies controlling on the Upper Paleozoic excellent natural gas-reservoir in northern Ordos basin, China. Geological Bulletin of China (in Chinese), 29(6):811-820. Mavko G, Mukerji J, Dvorkin J. 2003. The Rock Physics Handbook:Tools for Seismic Analysis of Porous Media. New York:Cambridge University Press, 1-329. Tang D H, Tan X C, Tu L L, et al. 2020. Control factors and pore evolution of tight sandstone reservoir of the Second Member of Shaximiao Formation in the transition zone between central and western Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition) (in Chinese), 47(4):460-471, doi:10.3969/j.issn.1671-9727.2020.04.08. Tian Z, Xiao L Z, Liao G Z, et al. 2019. Study on digital rock reconstruction method based on sedimentological process. Chinese Journal of Geophysics (in Chinese), 62(1):248-259, doi:10.6038/cjg2019L0457. Wang D X. 2016. Study on the rock physics model of gas reservoirs in tight sandstone. Chinese Journal of Geophysics (in Chinese), 59(12):4603-4622, doi:10.6038/cjg20161222. Wang R F, Wang L X, Li J L, et al. 2020. Diagenesis and porosity evolution of ultra-low permeability and shallow layers sandstone reservoir. Progress in Geophysics (in Chinese), 35(4):1465-1470, doi:10.6038/pg2020CC0416. Xie J R, Tang D H, Chen H B, et al. 2004. Research on characteristics of reservoirs of member 1 of Shaximiao formation in Gongshanmiao oil field, Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition) (in Chinese), 31(4):368-374. Xing W J, Wu K L, Wu X, et al. 2018. Multi-frequency laboratory measurement of rock physics property on sandstone. Progress in Geophysics (in Chinese), 33(4):1609-1616, doi:10.6038/pg2018BB0350. Zhou G F, Gong S T. 2020. Diagenesis and physical property evolution of tight glutenite reservoir in fault basin:taking Shahezi Formation in Xujiaweizi Fault Depression of Songliao Basin as an example. Journal of Xi'an Shiyou University (Natural Science Edition) (in Chinese), 35(1):34-41, doi:10.3969/j.issn.1673-064X.2020.01.005. Zhu N, Cao Y C, Xi K L, et al. 2019. Diagenesis and physical properties evolution of sandy conglomerate reservoirs:A case study of Triassic Baikouquan formation in northern slope zone of Mahu depression. Journal of China University of Mining & Technology (in Chinese), 48(5):1102-1118, doi:10.13247/j.cnki.jcumt.001019. 附中文参考文献 蔡勋育, 刘金连, 赵培荣等. 2020. 中国石化油气勘探进展与上游业务发展战略. 中国石油勘探, 25(1):11-19, doi:10.3969/j.issn.1672-7703.2020.01.002. 曹晓初, 常少英, 李立胜等. 2019. 碳酸盐岩孔洞储层地震岩石物理建模及应用. 地球物理学进展, 34(6):2239-2246, doi:10.6038/pg2019CC0389. 戴金星, 倪云燕, 吴小奇. 2012. 中国致密砂岩气及在勘探开发上的重要意义. 石油勘探与开发, 39(3):257-264. 邓继新, 唐郑元, 李越等. 2018. 成岩过程对五峰-龙马溪组页岩地震岩石物理特征的影响. 地球物理学报, 61(2):659-672, doi:10.6038/cjg2018L0062. 况晏, 司马立强, 瞿建华等. 2017. 致密砂砾岩储层孔隙结构影响因素及定量评价——以玛湖凹陷玛131井区三叠系百口泉组为例. 岩性油气藏, 29(4):91-100, doi:10.3969/j.issn.1673-8926.2017.04.011. 赖锦, 王贵文, 王书南等. 2013. 碎屑岩储层成岩相研究现状及进展. 地球科学进展, 28(1):39-50. 李鹭光, 何海清, 范土芝等. 2020. 中国石油油气勘探进展与上游业务发展战略. 中国石油勘探, 25(1):1-10, doi:10.3969/j.issn.1672-7703.2020.01.001. 林春明, 张霞, 周健等. 2011. 鄂尔多斯盆地大牛地气田下石盒子组储层成岩作用特征. 地球科学进展, 26(2):212-223. 罗静兰, 刘新社, 付晓燕等. 2014. 岩石学组成及其成岩演化过程对致密砂岩储集质量与产能的影响:以鄂尔多斯盆地上古生界盒8天然气储层为例. 地球科学-中国地质大学学报, 39(5):537-545, doi:10.3799/dqkx.2014.051. 罗静兰, 魏新善, 姚泾利等. 2010. 物源与沉积相对鄂尔多斯盆地北部上古生界天然气优质储层的控制. 地质通报, 29(6):811-820. 唐大海, 谭秀成, 涂罗乐等. 2020. 川中-川西过渡带沙溪庙组第二段致密砂岩储层物性控制因素及孔隙演化. 成都理工大学学报(自然科学版), 47(4):460-471, doi:10.3969/j.issn.1671-9727.2020.04.08. 田志, 肖立志, 廖广志等. 2019. 基于沉积过程的数字岩石建模方法研究. 地球物理学报, 62(1):248-259, doi:10.6038/cjg2019L0457. 王大兴. 2016. 致密砂岩气储层的岩石物理模型研究. 地球物理学报, 59(12):4603-4622, doi:10.6038/cjg20161222. 王瑞飞, 王立新, 李俊鹿等. 2020. 浅层致密砂岩油藏成岩作用及孔隙演化. 地球物理学进展, 35(4):1465-1470, doi:10.6038/pg2020CC0416. 谢继容, 唐大海, 陈洪斌等. 2004. 川中公山庙油田沙一段油藏储层特征研究. 成都理工大学学报(自然科学版), 31(4):368-374. 邢文军, 吴开龙, 吴鑫等. 2018. 储层砂岩宽频段地震岩石物理特征的实验研究. 地球物理学进展, 33(4):1609-1616, doi:10.6038/pg2018BB0350. 周国锋, 龚松涛. 2020. 断陷湖盆致密砂砾岩储层成岩作用与物性演化——以松辽盆地徐家围子断陷为例. 西安石油大学学报(自然科学版), 35(1):34-41, doi:10.3969/j.issn.1673-064X.2020.01.005. 朱宁, 操应长, 葸克来等. 2019. 砂砾岩储层成岩作用与物性演化——以玛湖凹陷北斜坡区三叠系百口泉组为例. 中国矿业大学学报, 48(5):1102-1118, doi:10.13247/j.cnki.jcumt.001019.