CHENG Wei,
BA Jing,
MA RuPeng et al
.2020.A study on the effects of pressure and fluid on rock pore structure and anelasticity: Theoretical model and experimental measurement Chinese Journal of Geophysics(in Chinese),63(12): 4517-4527,doi: 10.6038/cjg2020N0457
压力及流体对岩石孔隙结构与黏弹性的影响规律研究:理论模型及实验观测
程卫, 巴晶, 马汝鹏, 张琳
河海大学地球科学与工程学院, 南京 211100
A study on the effects of pressure and fluid on rock pore structure and anelasticity: Theoretical model and experimental measurement
CHENG Wei, BA Jing, MA RuPeng, ZHANG Lin
School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
Abstract:Geological origins and tectonic/thermal stresses result in variable pore structures (cracks and intergranular pores) in crustal rocks. The factors impacting on rock anelasticity include pressure, porosity, pore fluid, pore geometry, and so on. Anelasticity (wave attenuation and velocity dispersion) is more affected by soft pores (cracks) than by stiff (equant) pores. We perform ultrasonic measurements on the three dolomite samples under variable pressure and fluid type. The CPEM (Cracks and Pores Effective Medium) model is adopted in this study to compute the bulk and shear moduli of high and low frequency, and moreover, we obtain the CPEM-Zener model by extending the CPEM model to full frequency range, and incorporating the Zener (standard linear solid) model. The average crack aspect ratio, crack porosity and the phase velocities and quality factors are obtained as a function of frequency by fitting the experimental data of the relaxed and unrelaxed states. The results show that the average crack aspect ratio and crack porosity in the water-saturated rocks are higher than the oil-saturated cases, so that cracks containing oil tend to close earlier as the differential pressure (the difference between confining and pore pressures) increases. Moreover, the difference between the average crack aspect ratio and crack porosity of water-saturated rocks and those of oil-saturated rocks increases with increasing differential pressure (differential pressure less than 70 MPa), therefore, as the differential pressure increases, the effect of fluid type on crack in rocks increases. In addition, the average crack aspect ratio increases as the differential pressure increases for water-saturated rocks, this phenomenon is possibly related to the close of cracks with smaller aspect ratios. The values of crack porosity and crack density gradually decrease for the oil- and water-saturated dolomite specimens with increasing differential pressure. The initial crack density at 0 differential pressure can be obtained by performing exponential fitting on the relation between crack density and differential pressure. Crack density increases with increasing porosity, however, this growth rate decreases with increasing differential pressure. The P-wave dispersion derived from the CPEM-Zener model decreases with increasing differential pressure for fully water- and oil-saturated dolomites. This trend is generally consistent with the relationship between experimentally-measured inverse quality factor and differential pressure, which validates the applicability of the model. These results are useful for analyzing pore structure and rock anelasticity, and the related field applications about sonic logging and seismic exploration.
Adelinet M, Fortin J, Guéguen Y. 2011. Dispersion of elastic moduli in a porous-cracked rock:Theoretical predictions for squirt-flow. Tectonophysics, 503(1-2):173-181. Ba J, Carcione J M, Sun W T. 2015. Seismic attenuation due to heterogeneities of rock fabric and fluid distribution. Geophysical Journal International, 202(3):1843-1847. Ba J, Xu W H, Fu L Y, et al. 2017. Rock anelasticity due to patchy saturation and fabric heterogeneity:A double double-porosity model of wave propagation. Journal of Geophysical Research:Solid Earth, 122(3):1949-1976, doi:10.1002/2016JB013882. Ba J, Zhang L, Wang D, et al. 2018. Experimental analysis on P-wave attenuation in carbonate rocks and reservoir identification. Journal of Seismic Exploration, 27(4):371-402. Batzle M, Wang Z J. 1992. Seismic properties of pore fluids. Geophysics, 57(11):1396-1408, doi:10.1190/1.1443207. Carcione J M, Gurevich B. 2011. Differential form and numerical implementation of Biot's poroelasticity equations with squirt dissipation. Geophysics, 76(6):N55-N64. Carcione J M. 2014. Wave Fields in Real Media:Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. 3rd ed. New York:Elsevier Ltd.. Carcione J M, Cavallini F, Ba J, et al. 2019. On the Kramers-Kronig relations. Rheologica Acta, 58(1):21-28, doi:10.1007/s00397-018-1119-3. Deng J X, Wang S X, Tang G Y, et al. 2013. The influence of mesoscopic flow on the P-wave attenuation and dispersion in a porous media permeated by aligned fractures. Studia Geophysica et Geodaetica, 57(3):482-506, doi:10.1007/s11200-012-0668-7. Ding P B, Di B R, Wei J X, et al. 2017. Velocity and anisotropy influenced by different scale fractures:Experiments on synthetic rocks with controlled fractures. Chinese Journal of Geophysics (in Chinese), 60(4):1538-1546, doi:10.6038/cjg20170426. Du Q Z, Kong L Y, Han S C. 2009. Wavefield propagation characteristics in the fracture-induced anisotropic double-porosity medium. Chinese Journal of Geophysics (in Chinese), 52(4):1049-1058, doi:10.3969/j.issn.0001-5733.2009.04.022. Duan C S, Deng J X, Li Y, et al. 2018. Effect of pore structure on the dispersion and attenuation of fluid-saturated tight sandstone. Journal of Geophysics and Engineering, 15(2):449-460, doi:10.1088/1742-2140/aa8b82. Fortin J, Guéguen Y, Schubnel A. 2007. Effects of pore collapse and grain crushing on ultrasonic velocities and Vp/Vs. Journal of Geophysical Research:Solid Earth, 112(B8):B08207, doi:10.1029/2005jb004005. Gassmann F. 1951. Elastic waves through a packing of spheres. Geophysics, 16(4):673-685, doi:10.1190/1.1437718. Guéguen Y, Dienes J. 1989. Transport properties of rocks from statistics and percolation. Mathematical Geology, 21(1):1-13. Guo M Q, Fu L Y. 2007. Stress associated coda attenuation from ultrasonic waveform measurements. Geophysical Research Letters, 34(9):L09307, doi:10.1029/2007GL029582. Guo M Q, Fu L Y, Ba J. 2009. Comparison of stress-associated coda attenuation and intrinsic attenuation from ultrasonic measurements. Geophysical Journal International, 178(1):447-456. He T, Shi G, Zou C C, et al. 2011. The uncertainty analysis of the key factors that affect the AVO attributes in sandstone reservoir. Chinese Journal of Geophysics (in Chinese), 54(6):1584-1591, doi:10.3969/j.issn.0001-5733.2011.06.018. Izumotani S, Onozuka S. 2013. Elastic moduli and the aspect ratio spectrum of rock using simulated annealing. Geophysical Prospecting, 61(S1):489-504, doi:10.1111/1365-2478.12003. Kachanov M. 1993. Elastic solids with many cracks and related problems. Advances in Applied Mechanics, 30:259-445. Kachanov M, Tsukrov I, Shafiro B. 1994. Effective moduli of solids with cavities of various shapes. Applied Mechanics Reviews, 47(S1):S151-S174. King M S, Marsden J R. 2002. Velocity dispersion between ultrasonic and seismic frequencies in brine-saturated reservoir sandstones. Geophysics, 67(1):254-258, doi:10.1190/1.1451700. Liu J, Ba J, Ma J W, et al. 2010. An analysis of seismic attenuation in random porous media. Science China Physics, Mechanics and Astronomy, 53(4):628-637. Lucet N, Zinszner B. 1992. Effects of heterogeneities and anisotropy on sonic and ultrasonic attenuation in rocks. Geophysics, 57(8):1018-1026. Mavko G, Nolen-Hoeksema R. 1994. Estimating seismic velocities at ultrasonic frequencies in partially saturated rocks. Geophysics, 59(2):252-258, doi:10.1190/1.1443587. Mavko G, Mukerji T, Dvorkin J. 2009. The Rock Physics Handbook:Tools for Seismic Analysis of Porous Media. Cambridge:Cambridge University Press. Murphy III W F. 1984. Sonic and ultrasonic velocities:Theory versus experiment. Geophysical Research Letters, 12(2):85-88. Pang S, Liu C, Guo Z Q, et al. 2017. Estimation of pore-shape and shear wave velocity based on rock-physics modelling in shale. Journal of Jilin University (Earth Science Edition) (in Chinese), 47(2):606-615. Picotti S, Carcione J M. 2006. Estimating seismic attenuation (Q) in the presence of random noise. Journal of Seismic Exploration, 15(2):165-181. Quan Y L, Harris J M. 1997. Seismic attenuation tomography using the frequency shift method. Geophysics, 62(3):895-905. Shapiro S A. 2003. Elastic piezosensitivity of porous and fractured rocks. Geophysics, 68(2):482-486. Sun Y F. Goldberg D. 1997. Estimation of aspect-ratio changes with pressure from seismic velocities. Geological Society, London, Special Publications, 122(1):131-139, doi:10.1144/GSL.SP.1997.122.01.10. Toks z M N, Cheng C H, Timur A. 1976. Velocities of seismic waves in porous rocks. Geophysics, 41(4):621-645. Tonn R. 1991. The determination of the seismic quality factor Q from VSP data:A comparison of different computational methods. Geophysical Prospecting, 39(1):1-27. Walsh J B. 1965. The effect of cracks on the compressibility of rocks. Journal of Geophysical Research, 70(2):381-389. Wei X, Wang S X, Zhao J G, et al. 2015a. Laboratory study of velocity dispersion of the seismic wave in fluid-saturated sandstones. Chinese Journal of Geophysics (in Chinese), 58(9):3380-3388, doi:10.6038/cjg20150930. Wei X, Wang S X, Zhao J G, et al. 2015b. Laboratory investigation of influence factors on VP and VS in tight sandstone. Geophysical Prospecting for Petroleum (in Chinese), 54(1):9-16. Wei Y J, Ba J, Ma R P, et al. 2020. Effect of effective pressure change on pore structure and elastic wave responses in tight sandstones. Chinese Journal of Geophysics (in Chinese), 63(7):2810-2822, doi:10.6038/cjg2019N0004. Zhang C J, Ulrych T J. 2002. Estimation of quality factors from CMP records. Geophysics, 67(5):1542-1547. Zhang L, Ba J, Fu L Y, et al. 2019a. Estimation of pore microstructureby using the static and dynamic moduli. International Journal of Rock Mechanics and Mining Sciences, 113:24-30, doi:10.1016/j.ijrmms.2018.11.005. Zhang B Y, Yang D H, Cheng Y F, et al. 2019b. A unified poroviscoelastic model with mesoscopic and microscopic heterogeneities. Science Bulletin, 64(17):1246-1254, doi:10.1016/j.scib.2019.05.027. 附中文参考文献 丁拼搏, 狄帮让, 魏建新等. 2017. 不同尺度裂缝对弹性波速度和各向异性影响的实验研究. 地球物理学报, 60(4):1538-1546, doi:10.6038/cjg20170426. 杜启振, 孔丽云, 韩世春. 2009. 裂缝诱导各向异性双孔隙介质波场传播特征. 地球物理学报, 52(4):1049-1058, doi:10.3969/j.issn.0001-5733.2009.04.022. 何涛, 史謌, 邹长春等. 2011. 砂岩储层AVO特征影响因素的不确定性研究. 地球物理学报, 54(6):1584-1591, doi:10.3969/j.issn.0001-5733.2011.06.018. 逄硕, 刘财, 郭智奇等. 2017. 基于岩石物理模型的页岩孔隙结构反演及横波速度预测. 吉林大学学报(地球科学版), 47(2):606-615. 未晛, 王尚旭, 赵建国等. 2015a. 含流体砂岩地震波频散实验研究. 地球物理学报, 58(9):3380-3388, doi:10.6038/cjg20150930. 未晛, 王尚旭, 赵建国等. 2015b. 致密砂岩纵、横波速度影响因素的实验研究. 石油物探, 54(1):9-16. 魏颐君, 巴晶, 马汝鹏等. 2020. 有效应力变化对致密砂岩孔隙结构及弹性波响应的影响规律. 地球物理学报, 63(7):2810-2822, doi:10.6038/cjg2019N0004.