SHAN ChenChen,
WEN MingMing,
LIU Bin et al
.2020.Research and application of synthetic aperture sonar deep-tow in the seafloor fluid flow system: SAMS DT6000 deep-tow in the northern of South China Sea as an example Chinese Journal of Geophysics(in Chinese),63(12): 4451-4462,doi: 10.6038/cjg2020O0173
Research and application of synthetic aperture sonar deep-tow in the seafloor fluid flow system: SAMS DT6000 deep-tow in the northern of South China Sea as an example
SHAN ChenChen1, WEN MingMing1, LIU Bin1, FENG QiangQiang1, LI YongHang1,2, HUANG Wei1
1. Guangzhou Marine Geology Survey, Guangzhou 510000, China; 2. School of Marine Science, Sun Yat-sen University, Zhuhai Guangdong 519000, China
Abstract:Acoustic Deep-tow is a platform equipped with different acoustic transducers, and is used to obtain high resolution acoustic data, to describe seafloor topography and shallow profile structure in detail.It plays an important role in studying the type, formation mechanism and evolution mode of seafloor fluid flow system.In this paper, Synthetic Aperture Sonar(SAS) Deep-tow we introduced is integrated with synthetic aperture sonar, chirp sub-bottom profile and multibeam system that just provides backscatter data for the blind area. The high resolution sonar image, and high quality sub-bottom profile are generated by data process may explain the seabed microtopography, and analyze the seafloor fluid flow system, it helps to establish a three dimensional exploration of the fluid flow system of the seafloor. In contrast to the traditional acoustic deep-tow, SAS deep-tow has a higher resolution and a better efficiency in that it uses a small physical aperture to obtain higher along-track resolution by signal processing, and combined with the high resolution of the seabed sub-bottom profile and multibeam backscatter data can realize the three-dimensional display of the seabed shallow surface characteristics. In order to clarify the shallow acoustic features related to seabed fluid flow system, and analyze the relationship between the seepage and the structure, the mosaic image of SAS and the sub-bottom profile are employed, stripe shape of sea mounds, flame shape of gas plumes and new-moon shape of pockmark are identified by the sonar image, in the sub-bottom profile gas blanking, active fluid vent and fluid turbidity are recognized. According to the characteristics of fluid activity recognized, we conclude that the evolution pattern of shallow fluid activity has periodicity: the free gas rises to the seabed through the high permeability migration channel, due to the diffusion and accumulation of gas, causing the volume expansion of local sediments to form the sea mound; Then the gas leakage is caused by the collapse of the sea mound under the influence of various external factors. Finally, the loose sediment near gas leakage are carried away and then form the pockmark structure. As the fluid is discharged, the vent closes and the fluid accumulates again in the formation. The accumulated gas lifts the sedimentary formation up and form a gas mound at the bottom of the pockmark. In the end, seabed provides the more detail information about fluid flow system, it is accessible to pay attention to the shallow seafloor sonar image and sub-bottom profile.
Blondel P. 1999. Textural analysis and sidescan sonar imagery and generic seafloor characterization. Journal of the Acoustical Society of America,105(2),doi:10.1109/OCEANS.1998.725780. Bohrmann G, Bahr A, Brinkmann F, et al.2007. R/V Meteor cruise report M74/3 cold seeps of the Markan Subduction Zone (continental margin of Pakistan) M74,Leg3 Fujairah-Male 30 October-28 November, 2007. Bruce M P. 1992. A processing requirement and resolution capability comparison of side-scan and synthetic-aperture sonars.IEEE J.Oceanic Eng, 17(1):106-117,doi:10.1109/48.126959. Chen D F, Li X X, Xia B. 2004. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan Basin of the South China Sea. Chinese J. Geophys. (in Chinese), 47(3):483-489. Chen J X, Guan Y X, Song H B, et al. 2015. Distribution characteristics and geological implications of pockmarks and mud volcanoes in the northern and western continental margins of the South China Sea. Chinese J. Geophys. (in Chinese), 58(3):919-938, doi:10.6038/cjg20150319. Chen J X, Song H B, Guan Y X, et al. 2017. A preliminary study of submarine cold seeps applying seismic oceanography techniques. Chinese J. Geophys.(in Chinese), 60(2):604-616, doi:10.6038/cjg20170215. Chen L, Song H B. 2005. Geophysical features and identification of natural gas seepage in marine environment. Progress in Geophysics (in Chinese), 20(4):1067-1073, doi:10.3969/j.issn.1004-2903.2005.04.030. Chen Z H, Tian L Y, Hu B, et al. 2018. Application of "HAIMA"ROV in gas hydrates exploration. Journal of Ocean Technology (in Chinese), 37(2):24-29, doi:10.3969/j.issn.1003-2029.2018.02.005. Di P F, Feng D, Gao L B, et al. 2008. In situ measurement of fluid flow and signatures of seep activity at marine seep sites. Progress in Geophysics (in Chinese), 23(5):1592-1602. Dondurur D, Çifçi G, Drahor M G, et al. 2011. Acoustic evidence of shallow gas accumulations and active pockmarks in the Izmir Gulf, Aegean sea. Marine and Petroleum Geology, 28(8):1505-1516. Feng Q Q, Wen M M, Mou Z L, et al. 2018. Application of acoustic deep tow to the cold seep investigation. Engineering of Surveying and Mapping (in Chinese), 27(8):49-52, 59, doi:10.19349/j.cnki.issn1006-7949.2018.08.009. Gong Y H, Yang S X, Wang H B, et al. 2018. Prospect of gas hydrate resources in Qiong Dongnan Basin. Journal of Jilin University (Earth Science Edition) (in Chinese) 48(4):1030-1042, doi:10.13278/j.cnki.jjuese.20170033. Guo J, Feng Q Q, Wen M M, et al. 2018. Research and application of the Teledyne Benthos TTV-301 deep-tow system to the microtopography seabed. Engineering of Surveying and Mapping (in Chinese), 27(10):46-51, doi:10.19349/j.cnki.issn1006-7949.2018.10.009. Han T G, Tong S Y, Chen J X, et al. 2018. Analysis of detection methods for submarine plume. Progress in Geophysics (in Chinese), 33(5):2113-2125, doi:10.6038/pg2018CC0154. Hansen R E, Callow H J, Saeboe T O, et al.2011. Challenges in seafloor imaging and mapping with synthetic aperture sonar. IEEE Transactions on Geoence & Remote Sensing, 49(10):3677-3687. He J X, Su P B, Lu Z Q, et al. 2015. Prediction of gas sources of natural gas hydrate in the Qiongdongnan Basin, northern South China Sea, and its migration, accumulation and reservoir formation pattern. Natural Gas Industry (in Chinese), 35(8):19-29, doi:10.3787/j.issn.1000-0976.2015.08.003. Jones A T, Greinert J, Bowden D A, et al. 2010. Acoustic and visual characterisation of methane-rich seabed seeps at Omakere Ridge on the Hikurangi Margin, New Zealand. Marine Geology, 272(1-4):154-169. Judd A, Hovland M. 2007. Seabed Fluid Flow:The Impact on Geology, Biology and the Marine Environment. Cambridge:Cambridge University Press. Cutrona L J. 1975. Comparison of sonar system performance achievable using synthetic-aperture techniques with the performance achievable by more conventional means. J.Acoust.Soc.Am., 58(2):336-348. Li H S, Wei B, Du W D. 2017. Technical progress in research of multibeam synthetic aperture sonar. Acta Geodaetica et Cartographica Sinica (in Chinese), 46(10):1760-1769, doi:10.11947/j.AGCS.2017.20170410. Liang J Q, Fu S Y, Chen F, et al. 2017. Characteristics of methane seepage and gas hydrate reservoir in the northeastern slope of South China Sea. Natural Gas Geoscience (in Chinese), 28(5):761-770, doi:10.11764/j.issn.1672-1926.2017.02.006. Liang J, Wang M J,Lu J A, et al. 2013.Characteristics of sonic and seismic velocities of gas hydrate bearing sediments in the Shenhu area, northern South China Sea.Natural Gas Industry (in Chinese),33(7):29-35,doi:10.3787/j.issn.1000-0976.2013.07.005. Liu B. 2017. Gas and gas hydrate distribution around seafloor mound in the Dongsha area, north slope of the South China Sea. Acta Oceanologica Sinica (in Chinese), 39(3):68-75, doi:10.3969/j.issn.0253-4193.2017.03.006. Liu B R, Song H B, Guan Y X, et al. 2015. Characteristics and formation mechanism of cold seep system in the northeastern continental slope of South China Sea from sub-bottom profiler data. Chinese J. Geophys.(in Chinese), 58(1):247-256, doi:10.6038/cjg20150122. Liu J Y. 2019. Advancement of synthetic aperture sonar technique. Bulletin of Chinese Academy of Sciences (in Chinese), 34(3):283-288, doi:10.164/j.issn.1000-3045.2019.03.005. Luan X W, Yue B Z, Obzhirov A. 2008. Exploration and characteristics of shallow gas hydrate in Okhotsk Sea. Science in China Series D:Earth Sciences (in Chinese), 51(3):415-421, doi:10.1007/s11430-008-0018-3. Lurton X. 2002. An Introduction to Underwater Acoustics:Principles and Applications. London:Springer-Verlag. Mou J, Jiang F, Lai X Y. 2012. Technical comparison between multibeam sounding system deep-tow system and synthetic aperture sonar system. Journal of Wuhan University of Technology (Transportation Science & Engineering) (in Chinese), 36(1):82-86, doi:10.3963/j.issn.1006-2823.2012.01.019. Paull C K, Normark W R, lii W U, et al. 2008. Association among active seafloor deformation, mound formation, and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin, offshore California. Marine Geology, 250(3-4):258-275. Sun D J, Tian T. 2000. The study of synthetic aperture sonar (SAS) technique (Review). Journal of Harbin Engineering University (in Chinese), 21(1):51-56, doi:10.3969/j.issn.1006-7043.2000.01.013. Sun Q L, Wu S G, Chen D X, et al. 2014. Focused fluid flow system sand their implications for hydrocarbon and gas hydrate accumulations in the deep-water basins of the northern South China Sea. Chinese J. Geophys.(in Chinese), 57(12):4052-4062, doi:10.6038/cjg20141217. Tao W X, He S B, Zhao Z G, et al. 2006. Reservoir distribution in deepwater area of the Qiongdongnan Basin. Petroleum Geology & Experiment (in Chinese), 28(6):554-559, doi:10.3969/j.issn.1001-6112.2006.06.010. Taylor B, Hayes D E. 2013. Origin and history of the South China Sea basin. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands:Part 2. American Geophysical Union (AGU). Wu S G, Gong Y H, Mi L J, et al. 2010. Study on hydrocarbon leakage system and associated gas hydrate reservoirs in the deep water basin of northern South China Sea. Geoscience (in Chinese), 24(3):433-440, doi:10.3969/j.issn.1000-8527.2010.03.003. Xenaki A, Pailhas Y. 2019. Compressive synthetic aperture sonar imaging with distributed optimization. The Journal of the Acoustical Society of America, 146(3):1839-1850. Yang L, Liu B, Xu M J, et al. 2018. Characteristics of active cold seepages in Qiongdongnan Sea Area of the northern South China Sea. Chinese J. Geophys.(in Chinese), 61(7):2905-2914, doi:10.6038/cjg2018L0374. Zhang H Q, Wu L S, Zhang J W. 2005. Application of the sea-floor visualization technique in gas hydrate exploration. Geological Bulletin of China (in Chinese), 24(2):185-188, doi:10.3969/j.issn.1671-2552.2005.02.015. Zhao T H, Zhang X H, Wang X T, et al. 2009. Acoustic detection of seabed hydrocarbon seepage in the north depression of South Yellow Sea Basin. Petroleum Exploration and Development (in Chinese), 36(2):195-199, doi:10.3321/j/issn:1000-0747.2009.02.009. 附中文参考文献 陈多福, 李绪宣, 夏斌. 2004. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测. 地球物理学报, 47(3):483-489. 陈江欣, 关永贤, 宋海斌等. 2015. 麻坑、泥火山在南海北部与西部陆缘的分布特征和地质意义. 地球物理学报, 58(3):919-938, doi:10.6038/cjg20150319. 陈江欣, 宋海斌, 关永贤等. 2017. 海底冷泉的地震海洋学初探. 地球物理学报, 60(2):604-616, doi:10.6038/cjg20170215. 陈林, 宋海斌. 2005. 海底天然气渗漏的地球物理特征及识别方法. 地球物理学进展, 20(4):1067-1073, doi:10.3969/j.issn.1004-2903.2005.04.030. 陈宗恒, 田烈余, 胡波等. 2018. "海马"号ROV在天然气水合物勘查中的应用. 海洋技术学报, 37(2):24-29, doi:10.3969/j.issn.1003-2029.2018.02.005. 邸鹏飞, 冯东, 高立宝等. 2008. 海底冷泉流体渗漏的原位观测技术及冷泉活动特征. 地球物理学进展, 23(5):1592-1602. 冯强强, 温明明, 牟泽霖等. 2018. 声学深拖系统在海底冷泉调查中的应用. 测绘工程, 27(8):49-52, 59, doi:10.19349/j.cnki.issn1006-7949.2018.08.009. 龚跃华, 杨胜雄, 王宏斌等. 2018. 琼东南盆地天然气水合物成矿远景. 吉林大学学报(地球科学版), 48(4):1030-1042, doi:10.13278/j.cnki.jjuese.20170033. 郭军, 冯强强, 温明明等. 2018. Teledyne Benthos TTV-301声学深拖系统在海底微地形地貌调查中的应用. 测绘工程, 27(10):46-51, doi:10.19349/j.cnki.issn1006-7949.2018.10.009. 韩同刚, 童思友, 陈江欣等. 2018. 海底羽状流探测方法分析. 地球物理学进展, 33(5):2113-2125, doi:10.6038/pg2018CC0154. 何家雄, 苏丕波, 卢振权等. 2015. 南海北部琼东南盆地天然气水合物气源及运聚成藏模式预测. 天然气工业, 35(8):19-29, doi:10.3787/j.issn.1000-0976.2015.08.003. 李海森, 魏波, 杜伟东. 2017. 多波束合成孔径声呐技术研究进展. 测绘学报, 46(10):1760-1769, doi:10.11947/j.AGCS.2017.20170410. 梁金强, 付少英, 陈芳等. 2017. 南海东北部陆坡海底甲烷渗漏及水合物成藏特征. 天然气地球科学, 28(5):761-770, doi:10.11764/j.issn.1672-1926.2017.02.006. 梁劲, 王明君, 陆敬安等.2013.南海北部神狐海城含夭然气水合物沉积层的速度特征.天然气工业,33(7):29-35,doi:10.3787/j.issn.1000-0976.2013.07.005. 刘斌. 2017. 南海北部陆坡东沙海域海底丘状体气体与水合物分布. 海洋学报, 39(3):68-75, doi:10.3969/j.issn.0253-4193.2017.03.006. 栾锡武, 赵克斌, Obzhirov A 等. 2008. 鄂霍次克海浅表层天然气水合物的勘查识别和基本特征. 中国科学 D辑:地球科学, 38(1):99-107. 刘伯然, 宋海斌, 关永贤等. 2015. 南海东北部陆坡冷泉系统的浅地层剖面特征与分析. 地球物理学报, 58(1):247-256, doi:10.6038/cjg20150122. 刘纪元. 2019. 合成孔径声呐技术研究进展. 中国科学院院刊, 34(3):283-288, doi:10.164/j.issn.1000-3045.2019.03.005. 牟健, 姜峰, 赖新云. 2012. 深海多波束系统、深拖系统及合成孔径声呐系统的技术性能对比. 武汉理工大学学报(交通科学与工程版), 36(1):82-86, doi:10.3963/j.issn.1006-2823.2012.01.019. 孙大军, 田坦. 2000. 合成孔径声呐技术研究(综述). 哈尔滨工程大学学报, 21(1):51-56, doi:10.3969/j.issn.1006-7043.2000.01.013. 孙启良, 吴时国, 陈端新等. 2014. 南海北部深水盆地流体活动系统及其成藏意义. 地球物理学报, 57(12):4052-4062, doi:10.6038/cjg20141217. 陶维祥, 何仕斌, 赵志刚等. 2006. 琼东南盆地深水区储层分布规律. 石油实验地质, 28(6):554-559, doi:10.3969/j.issn.1001-6112.2006.06.010. 吴时国, 龚跃华, 米立军等. 2010. 南海北部深水盆地油气渗漏系统及天然气水合物成藏机制研究. 现代地质, 24(3):433-440, doi:10.3969/j.issn.1000-8527.2010.03.003. 杨力, 刘斌, 徐梦婕等. 2018. 南海北部琼东南海域活动冷泉特征及形成模式. 地球物理学报, 61(7):2905-2914, doi:10.6038/cjg2018L0374. 张汉泉, 吴庐山, 张锦炜. 2005. 海底可视技术在天然气水合物勘查中的应用. 地质通报, 24(2):185-188, doi:10.3969/j.issn.1671-2552.2005.02.015. 赵铁虎,张训华, 王修田等. 2009. 南黄海盆地北部坳陷海底油气渗漏的声学探测. 石油勘探与开发, 36(2):195-199, doi:10.3321/j.issn:1000-747.2009.02.009.