OUYANG MingDa,
MA YueYuan
.2020.Path planning for gravity aided navigation based on improved A* algorithm Chinese Journal of Geophysics(in Chinese),63(12): 4361-4368,doi: 10.6038/cjg2020N0391
Path planning for gravity aided navigation based on improved A* algorithm
OUYANG MingDa1,2,3, MA YueYuan1,3
1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450052, China; 2. Xi'an Research Institute of Surveying and Mapping, Xi'an 710054, China; 3. Stake Key Laboratory of Geo-information Engineering, Xi'an 710054, China
Abstract:As an auxiliary method,underwater gravity matching navigation can effectively overcome the error accumulation of the inertial navigation system caused by long time underwater navigation.The irregularity of the gravity field makes the adaptability different in different ocean areas,and the sea areas with significant changes in gravity characteristics have higher matching accuracy,otherwise the accuracy is lower.On the basis of adaptability evaluation,planning the navigation path can help improve the feasibility of the operation task and reasonably avoid unfavorable factors.In this paper,the standard deviation,roughness and other characteristic parameters of gravity anomalies are used to evaluate the adaptability of the sea area's gravity field,and a reference map of the gravity field adapting grid is formed.The A* algorithm is introduced to plan path between starting point and target point,so as to effectively avoid the non-fitting area and improve path's rationality. The problem of the traditional A* algorithm is that there are too many broken lines in the planned route and the total curvature of the route is large.This paper designs an improved method,in which through the comparison analysis of the forward and backward directions and the screening of individual route nodes by node,the redundant course adjustment is effectively reduced and the path is smoothly optimized.
Canciani A, Raquet J. 2017. Airborne magnetic anomaly navigation. IEEE Transactions on Aerospace and Electronic Systems, 53(1):67-80. Chen Y Q, Li T X, Yu S H, et al. 2019. Global path planning of robots based on potential field ant colony algorithm. Journal of Dalian University of Technology (in Chinese), 59(3):316-322. Cui R X, Guo J, Mao Z Y. 2015. Adaptive backstepping control of wheeled inverted pendulums models. Nonlinear Dynamics, 79(1):501-511. Han Y R, Wang B, Deng Z H, et al. 2016. An improved TERCOM-based algorithm for gravity-aided navigation. IEEE Sensors Journal, 16(8):2537-2544. Indelman V, Gurfil P, Rivlin E, et al. 2012. Real-time vision-aided localization and navigation based on three-view geometry. IEEE Transactions on Aerospace & Electronic Systems, 48(3):2239-2259. Kong M, Tian X D, Liu Z J, et al. 2016. Accuracy analysis of marine gravity data shared internationally. Science of Surveying and Mapping (in Chinese), 41(6):14-17, 22. Krasnov A A, Nesenyuk L P, Peshekhonov V G, et al. 2011. Integrated marine gravimetric system. Development and operation results. Gyroscopy and Navigation, 2(2):75-81. Li Z W, Zheng W, Wu F, et al. 2019a. Improving the matching efficiency of underwater gravity matching navigation based on a new hierarchical neighborhood threshold method. Chinese Journal of Geophysics (in Chinese), 62(7):2405-2416, doi:10.6038/cjg2019M0086. Li Z W, Zheng W, Fang J, et al. 2019b. Optimizing suitability area of underwater gravity matching navigation based on a new principal component weighted average normalization method. Chinese Journal of Geophysics (in Chinese), 62(9):3269-3278, doi:10.6038/cjg2019M0346. Lu Z C, Cai Q J. 2010. Gravity aided navigation path plan research based on A* algorithm. Journal of Chinese Inertial Technology (in Chinese), 18(5):556-560. Ma Y Y, Ouyang Y Z, Huang M T, et al. 2016. Selection method for gravity-field matchable area based on information entropy of characteristic parameters. Journal of Chinese Inertial Technology (in Chinese), 24(6):763-768. Mali P, Manna S K, Mukhopadhyay A, et al. 2018. Multifractal analysis of multiparticle emission data in the framework of visibility graph and sandbox algorithm. Physical A:Statistical Mechanics and its Applications, 493:253-266. Ouyang M D, Sun Z M, Zhai Z H. 2014. Predicting bathymetry in South China Sea using the gravity geologic method. Chinese Journal of Geophysics (in Chinese), 57(9):2756-2765, doi:10.6038/cjg20140903. Ouyang M D. 2015. Theory and Methodology of bathymetry inversion using the oceanic gravity data[Master thesis] (in Chinese). Zhengzhou:Information Engineering University. Panahandeh G, Jansson M. 2014. Vision-aided inertial navigation based on ground plane feature detection. IEEE/ASME Transactions on Mechatronics, 19(4):1206-1215. Persson S M, Sharf I. 2014. Sampling-based A* algorithm for robot path-planning. The International Journal of Robotics Research, 33(13):1683-1708. Sandwell D T, Smith W H F, Gille S, et al. 2006. Bathymetry from space:rationale and requirements for a new, high-resolution altimetric mission. Comptes Rendus Géoscience, 338(14-15):1049-1062. Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205):65-67. Shen J, Li H, Zhang J Y. 2012. Optimal path planning method for underwater terrain-aided navigation. Torpedo Technology (in Chinese), 20(4):276-280. Wang B, Zhu Y W, Deng Z H, et al. 2016. The gravity matching area selection criteria for underwater gravity-aided navigation application based on the comprehensive characteristic parameter. IEEE/ASME Transactions on Mechatronics, 21(6):2935-2943. Wang B, Zhu J W, Deng Z H, et al. 2019. A characteristic parameter matching algorithm for gravity-aided navigation of underwater vehicles. IEEE Transactions on Industrial Electronics, 66(2):1203-1212. Wang H B, Wu L, Chai H, et al. 2017. Characteristics of marine gravity anomaly reference maps and accuracy analysis of gravity matching-aided navigation. Sensors, 17(8):1851. Wu P, Sang C J, Lu Z H, et al. 2019. Research on mobile robot path planning based on improved A* algorithm. Computer Engineering and Applications (in Chinese), 55(21):227-233. Yang Y X, Xu T H, Xue S Q. 2017. Progresses and prospects in developing marine geodetic datum and marine navigation of China. Acta Geodaetica et Cartographica Sinica (in Chinese), 46(1):1-8. Yang Z L, Zhu Z S, Zhao W G. 2014. A triangle matching algorithm for gravity-aided navigation for underwater vehicles. Journal of Navigation, 67(2):227-247. Zhang C G, Yuan B Q, Zhang G L. 2017. Quality evaluation of land gravity data in the latest global gravity database V23. Advances in Earth Science (in Chinese), 32(1):75-82. Zhang H M, Li M L, Yang L. 2018. Safe path planning of mobile robot based on improved A* algorithm. Computer Simulation (in Chinese), 35(4):319-324. Zhang J Y, Zhao Z P, Liu D. 2006. A path planning method for mobile robot based on artificial potential field. Journal of Harbin Institute of Technology (in Chinese), 38(8):1306-1309. Zhang K, Zhao J H, Wang Q. 2013. Study on recognition and classification of appropriate matching area for underwater navigation based on SVM. Journal of Geodesy and Geodynamics (in Chinese), 33(6):72-77. Zheng H, Wang Y, Wang H B. 2012. Simulation of geomagnetic aided submarine navigation based on EMAG2. Progress inGeophysics (in Chinese), 27(4):1795-1803, doi:10.6038/j. issn.1004-2903.2012.04.063. Zheng W, Li Z W, Wu F. 2019. Research progress in improving the accuracy of underwater inertial/gravity integrated navigation based on the new generation of GNSS-R constellation sea surface altimetry principle. Science Technology and Engineering (in Chinese), 19(36):21-36. 附中文参考文献 陈余庆, 李桐训, 于双和等. 2019. 基于势场蚁群算法的机器人全局路径规划. 大连理工大学学报, 59(3):316-322. 孔敏, 田先德, 刘志杰等. 2016. 国外共享海洋重力数据精度分析. 测绘科学, 41(6):14-17, 22. 李钊伟, 郑伟, 吴凡等. 2019a. 基于新型分层邻域阈值搜索法提高水下潜器重力匹配导航的匹配效率. 地球物理学报, 62(7):2405-2416, doi:10.6038/cjg2019M0086. 李钊伟, 郑伟, 房静等. 2019b. 基于新型主成分加权平均归一化法优选水下重力匹配导航适配区. 地球物理学报, 62(9):3269-3278, doi:10.6038/cjg2019M0346. 陆泽橼, 蔡体菁. 2010. 基于A*算法的重力辅助导航航迹规划. 中国惯性技术学报, 18(5):556-560. 马越原, 欧阳永忠, 黄谟涛等. 2016. 基于重力场特征参数信息熵的适配区选择方法. 中国惯性技术学报, 24(6):763-768. 欧阳明达, 孙中苗, 翟振和. 2014. 基于重力地质法的南中国海海底地形反演. 地球物理学报, 57(9):2756-2765, doi:10.6038/cjg20140903. 欧阳明达. 2015. 利用海洋重力数据反演海底地形的理论与方法[硕士论文]. 郑州:解放军信息工程大学. 谌剑, 李恒, 张静远. 2012. 水下地形辅助导航最优航路规划. 鱼雷技术, 20(4):276-280. 吴鹏, 桑成军, 陆忠华等. 2019. 基于改进A*算法的移动机器人路径规划研究. 计算机工程与应用, 55(21):227-233. 杨元喜, 徐天河, 薛树强. 2017. 我国海洋大地测量基准与海洋导航技术研究进展与展望. 测绘学报, 46(1):1-8. 张春灌, 袁炳强, 张国利. 2017. 最新全球重力数据库V23中陆域重力资料质量评估. 地球科学进展, 32(1):75-82. 张红梅, 李明龙, 杨乐. 2018. 基于改进A*算法的移动机器人安全路径规划. 计算机仿真, 35(4):319-324. 张建英, 赵志萍, 刘暾. 2006. 基于人工势场法的机器人路径规划. 哈尔滨工业大学学报, 38(8):1306-1309. 张凯, 赵建虎, 王锲. 2013. 基于支持向量机的水下地形匹配导航中适配区划分方法研究. 大地测量与地球动力学, 33(6):72-77. 郑晖, 王勇, 王虎彪. 2012. 地球磁场异常格网(EMAG2)辅助潜艇导航仿真研究. 地球物理学进展, 27(4):1795-1803, doi:10.6038/j.issn.1004-2903.2012.04.063. 郑伟, 李钊伟, 吴凡. 2019. 基于新一代GNSS-R星座海面测高原理提高水下惯性/重力组合导航精度研究进展. 科学技术与工程, 19(36):21-36.