WANG YouCun,
GUO JinYun,
ZHOU MaoSheng et al
.2020.Geometric solution method of SLR station coordinate based on multi-LEO satellites Chinese Journal of Geophysics(in Chinese),63(12): 4333-4344,doi: 10.6038/cjg2020O0069
Geometric solution method of SLR station coordinate based on multi-LEO satellites
WANG YouCun1,2, GUO JinYun1, ZHOU MaoSheng1, JIN Xin1, ZHAO ChunMei3, CHANG XiaoTao4
1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China; 2. Research Center of GNSS, Wuhan University, Wuhan 430079, China; 3. Beijing Fangshan Satellite Laser Ranging National Observation and Research Station, Beijing 100830, China; 4. Land Satellite Remote Sensing Application Center of Ministry of Natural Resources, Beijing 100048, China
Abstract:The satellite laser ranging (SLR) technique is mainly used as an external inspection method for the evaluation of satellite orbit, or one of the means for orbit determination with other space geodetic techniques. The SLR station coordinates are traditionally determined with the dynamic method. In this paper, the low-earth-orbit (LEO) satellite is used as the satellite co-location for GNSS/SLR technology, and the sub-centimeter-level precision solution of the geometric coordinates of the SLR station is realized by using the scientific precise orbit and SLR data of multi LEO satellites. The least squares method is used to estimate the accurate SLR station position, and the variance component estimation method is applied to reasonably allocate the weights of observations between different LEO satellites and weaken the possible systematic deviation of LEO satellite groups. The final results indicated that the average difference between the three-dimensional coordinates of SLR stations and the SLRF2014 results was 25.1 mm based on the four satellites of GRACE-A/B, JASON-2 and HY-2A.This study provides not only a method for determining the geometric coordinates of SLR stations with the agreement level of 1~2 cm with respective to SLRF2014, but also an idea for the combination of different space geodetic techniques based on LEO satellites. It is of great significance to establish and maintain the ITRF (International Terrestrial Reference Frames) at the LEO satellite level.
Altamimi Z, Sillard P, Boucher C. 2002. ITRF2000:A new release of the International Terrestrial Reference Frame for Earth science applications. Journal of Geophysical Research:Solid Earth, 107(B10):ETG 2-1-ETG 2-19, doi:10.1029/2001jb000561. Altamimi Z, Rebischung P, Métivier L, et al. 2016. ITRF2014:A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research:Solid Earth, 121(8):6109-6131, doi:10.1002/2016jb013098. Arnold D, Montenbruck O, Hackel S, et al. 2018. Satellite Laser Ranging to low Earth orbiters:orbit and network validation. Journal of Geodesy, 93(11):2315-2334, doi:10.1007/s00190-018-1140-4. Bruni S, Rebischung P, Zerbini S, et al. 2017. Assessment of the possible contribution of space ties on-board GNSS satellites to the terrestrial reference frame. Journal of Geodesy, 92(4):383-399, doi:10.1007/s00190-017-1069-z. Bury G, Sośnica K, Zajdel R. 2018. Multi-GNSS orbit determination using satellite laser ranging. Journal of Geodesy, 93(12):2447-2463, doi:10.1007/s00190-018-1143-1. Chen J. 2019. Satellite gravimetry and mass transport in the earth system. Geodesy and Geodynamics, 10(5):402-415, https://doi.org/10.1016/j.geog.2018.07.001. Cheng P F, Wen H J, Liu H L, et al. 2019. Research situation and future development of satellite geodesy. Geomatics and Information Science of Wuhan University (in Chinese), 44(1):48-54, doi:10.13203/j.whugis20180356. CNES. 2015. SP3 orbits JASON-2. https://cddis.nasa.gov/archive/doris/products/orbits/ssa/ja2/README_SP3_ja2.txt. CNES. 2017. SP3 orbits HY-2A. https://cddis.nasa.gov/archive/doris/products/orbits/ssa/ja2/README_SP3_h2a.txt. Donlon C, Berruti B, Buongiorno A, et al. 2012. The global monitoring for environment and security (GMES) Sentinel-3 mission. Remote Sensing of Environment,120:37-57,doi:10.1016/j.rse.2011.07.024. Guo J, Zhao Q L, Li M, et al. 2013. Centimeter level orbit determination for HY2A using GPS data. Geomatics and Information Science of Wuhan University (in Chinese), 38(1):52-55. Guo J Y, Han Y B. 2009. Seasonal and inter-annual variations of length of day and polar motion observed by SLR in 1993-2006. Chinese Science Bulletin, 54(1):46-52, doi:10.1007/s11434-008-0504-1. Guo J Y, Kong Q L, Qin J, et al. 2013. On precise orbit determination of HY-2 with space geodetic techniques. Acta Geophysica, 61(3):752-772, doi:10.2478/s11600-012-0095-8. Guo J Y, Wang Y C, Shen Y, et al. 2018. Estimation of SLR station coordinates by means of SLR measurements to kinematic orbit of LEO satellites. Earth, Planets and Space, 70(1):201, doi:10.1186/s40623-018-0973-7. Harville D A. 1977. Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association, 72(358):320-338. ILRS. 2007a. List of core sites to be used for EOP referencing. https://cddis.nasa.gov/archive/slr/products/resource/reanalysis_2007. ILRS. 2017b. SLRF2014 station coordinates. https://cddis.nasa.gov/archive/slr/products/resource/SLRF2014_POS+VEL_2030.0_170605.snx. JPL. 2012. Gravity recovery and climate experiment-product specification document, 4.6 (edn). ftp://podaac.jpl.nasa.gov/allData/grace/docs/ProdSpecDoc_v4.6.pdf. Kong Q L, Guo J Y, Sun Y, et al. 2017. Centimeter-level precise orbit determination for the HY-2A satellite using DORIS and SLR tracking data. Acta Geophysica, 65(1):1-12, doi:10.1007/s11600-016-0001-x. Kong Y, Zhang X Z, Sun B Q, et al. 2018. Analysis of the impact of SLR data on precise orbit determination of BeiDou satellites. Acta Geodaetica et Cartographica Sinica (in Chinese), 47(S1):86-92. Lambin J, Morrow R, Fu L L, et al. 2010. The OSTM/Jason-2 mission. Marine Geodesy, 33(S1):4-25, doi:10.1080/01490419.2010.491030. Liu Y, An N, Fan C B, et al. 2018. Influence of shape effect of angle reflector on ranging precision of Satellite Laser Ranging system. Laser & Optoelectronics Progress (in Chinese), 55(11):59-65, doi:10.3788/LOP55.110101. Luceri V, Pirri M, Rodríguez J, et al. 2019. Systematic errors in SLR data and their impact on the ILRS products. Journal of Geodesy, 93(11):2357-2366, doi:10.1007/s00190-019-01319-w. Luo Q S, Guo T Y, Zou T, et al. 2017. Theoretical analysis of laser retro-reflectors and experiment of laser ranging for HY-2 satellites. Infrared and Laser Engineering (in Chinese), 46(11):104-110. Mendes V B, Pavlis E C. 2004. High-accuracy zenith delay prediction at optical wavelengths. Geophysical Research Letters, 31(14):L14602, doi:10.1029/2004gl020308. Munghemezulu C, Combrinck L, Mayer D, et al. 2014. Comparison of site velocities derived from collocated GPS, VLBI and SLR techniques at the Hartebeesthoek Radio Astronomy Observatory (comparison of site velocities). Journal of Geodetic Science, 4(1):1-7, doi:10.2478/jogs-2014-0002. Otsubo T, Müller H, Pavlis E C, et al. 2019. Rapid response quality control service for the laser ranging tracking network. Journal of Geodesy, 93(11):2335-2344, doi:10.1007/s00190-018-1197-0. Pearlman M R, Degnan J J, Bosworth J M. 2002. The international laser ranging service. Advances in Space Research, 30(2):135-143, doi:10.1016/S0273-1177(02)00277-6. Pearlman M, Arnold D, Davis M, et al. 2019a. Laser geodetic satellites:a high-accuracy scientific tool. Journal of Geodesy, 93(11):2181-2194, doi:10.1007/s00190-019-01228-y. Pearlman M R, Noll C E, Pavlis E C, et al. 2019b. The ILRS:approaching 20 years and planning for the future. Journal of Geodesy, 93(11):2161-2180, doi:10.1007/s00190-019-01241-1. Petit G, Luzum B. 2010. IERS conventions (2010). IERS Technical Note no.36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt. Qin X P, Yang Y X. 2003. Applications of robust variance component estimation to satellite orbit determination. Journal of Geodesy and Geodynamics (in Chinese), 23(4):40-43. Qin X P, Jiao W H, Cheng L Y, et al. 2005. Evaluation of CHAMP satellite orbit with SLR measurements. Geomatics and Information Science of Wuhan University (in Chinese), 30(1):38-41. Qin X P, Yang Y X. 2019. Influence of stochastic model on the coordinate of Xi'an mobile SLR station determination. Geomatics and Information Science of Wuhan University (in Chinese), 44(12):1765-1770, doi:10.13203/j.whugis20180210. Rebischung P, Griffiths J, Ray J, et al. 2011. IGS08:the IGS realization of ITRF2008. GPS Solutions, 16(4):483-494, doi:10.1007/s10291-011-0248-2. Riepl S, Müller H, Mähler S, et al. 2019. Operating two SLR systems at the geodetic observatory Wettzell:from local survey to space ties. Journal of Geodesy, 93(11):2379-2387, doi:10.1007/s00190-019-01243-z. Sahin M, Cross P A, Sellers P C. 1992. Variance component estimation applied to Satellite Laser Ranging. Bulletin Géodésique, 66(3):284-295, doi:10.1007/BF02033189. Shao F, Wang X Y, He B, et al. 2019. Effect analysis of the weighting scheme with modified FCM clustering algorithm on precision of SLR orbit determination. Acta Geodaetica et Cartographica Sinica (in Chinese), 48(10):1236-1243, doi:10.11947/j.AGCS.2019.20180373. Sheng C Z, Gan W J, Zhao C M, et al. 2013. Precise orbit determination of JASON-2 satellite:analysis of GPS, SLR and DORIS. Scientia Sinica Physica, Mechanica & Astronomica (in Chinese), 43(2):219-224, doi:10.1360/132012-553. Sośnica K, Bury G, Zajdel R. 2018. Contribution of multi-GNSS constellation to SLR-derived terrestrial reference frame. Geophysical Research Letters, 45(5):2339-2348, doi:10.1002/2017gl076850. Sośnica K, Bury G, Zajdel R, et al. 2019. Estimating global geodetic parameters using SLR observations to Galileo, GLONASS, BeiDou, GPS, and QZSS. Earth, Planets and Space, 71(1):20, doi:10.1186/s40623-019-1000-3. Strugarek D, Sośnica K, Arnold D, et al. 2019. Determination of global geodetic parameters using Satellite Laser Ranging measurements to Sentinel-3 satellites. Remote Sensing, 11(19):2282, doi:10.3390/rs11192282. Sun F P, Zhao M. 1994. Study of plate motion and crustal deformation from satellite laser ranging site velocities. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 37(5):596-605. Tapley B D, Bettadpur S, Watkins M, et al. 2004. The gravity recovery and climate experiment:Mission overview and early results. Geophysical Research Letters, 31(9):L09607, doi:10.1029/2004gl019920. Teunissen P J G, Amiri-Simkooei A R. 2008. Least-squares variance component estimation. Journal of Geodesy, 82(2):65-82, doi:10.1007/s00190-007-0157-x. Thaller D, Dach R, Seitz M, et al. 2011. Combination of GNSS and SLR observations using satellite co-locations. Journal of Geodesy, 85(5):257-272, doi:10.1007/s00190-010-0433-z. Thaller D, Sośnica K, Steigenberger P, et al. 2015. Pre-combined GNSS-SLR solutions:What could be the benefit for the ITRF?//REFAG 2014. Springer, 85-94. Wu Z B, Deng H R, Zhang H F, et al. 2019. Analysis and improvement on the stability of satellite laser ranging system. Journal ofInfrared and Millimeter Waves (in Chinese), 38(4):479-484. Zajdel R, Sośnica K, Drożdżewski M, et al. 2019. Impact of network constraining on the terrestrial reference frame realization based on SLR observations to LAGEOS. Journal of Geodesy, 93(11):2293-2313, doi:10.1007/s00190-019-01307-0. Zhou M S, Guo J Y, Liu X, et al. 2020. Crustal movement derived by GNSS technique considering common mode error with MSSA. Advances in Space Research, 66(8):1819-1828, doi:10.1016/j.asr.2020.06.018. Zhu Y L, Feng C G. 2005. Earth orientation parameter and the geocentric variance during 1993-2002 solved with Lageos SLR data. Acta Geodaetica et Cartographica Sinica (in Chinese), 34(1):19-23. 附中文参考文献 程鹏飞, 文汉江, 刘焕玲等. 2019. 卫星大地测量学的研究现状及发展趋势. 武汉大学学报(信息科学版), 44(1):48-54, doi:10.13203/j.whugis20180356. 郭靖, 赵齐乐, 李敏等. 2013. 利用星载GPS观测数据确定海洋2A卫星cm级精密轨道. 武汉大学学报(信息科学版), 38(1):52-55. 孔垚, 张小贞, 孙保琪等. 2018. SLR数据对北斗卫星精密定轨的作用分析. 测绘学报, 47(S1):86-92. 刘源, 安宁, 范存波等. 2018. 角反射器形状效应对卫星激光测距系统测距精度的影响. 激光与光电子学进展, 55(11):59-65, doi:10.3788/LOP55.110101. 罗青山, 郭唐永, 邹彤等. 2017. HY-2卫星激光反射器理论分析及激光测距实验. 红外与激光工程, 46(11):104-110. 秦显平, 杨元喜. 2003. 抗差方差分量估计在卫星定轨中的应用. 大地测量与地球动力学, 23(4):40-43. 秦显平, 焦文海, 程芦颖等. 2005. 利用SLR检核CHAMP卫星轨道. 武汉大学学报(信息科学版), 30(1):38-41. 秦显平, 杨元喜. 2019. 随机模型对解算西安流动SLR站坐标的影响. 武汉大学学报(信息科学版), 44(12):1765-1770, doi:10.13203/j.whugis20180210. 邵璠, 王小亚, 何冰等. 2019. 模糊聚类定权法对SLR定轨精度的影响. 测绘学报, 48(10):1236-1243, doi:10.11947/j.AGCS.2019.20180373. 盛传贞, 甘卫军, 赵春梅等. 2013. JASON-2卫星精密轨道确定:GPS, SLR和DORIS分析. 中国科学:物理学力学天文学, 43(2):219-224, doi:10.1360/132012-553. 孙付平, 赵铭. 1994. 全球五大板块的运动和形变——用卫星激光测距数据导出的站速度分析. 地球物理学报, 37(5):596-605. 吴志波, 邓华荣, 张海峰等. 2019. 卫星激光测距系统稳定性分析及提高. 红外与毫米波学报, 38(4):479-484. 朱元兰, 冯初刚. 2005. 用Lageos卫星SLR资料解算地球定向参数及监测地球质心的运动. 测绘学报, 34(1):19-23.