LIU CongLiang,
SUN YueQiang,
DU QiFei et al
.2020.Ground-based GNSS VTEC constrained ionospheric correction method for atmospheric occultation Chinese Journal of Geophysics(in Chinese),63(12): 4324-4332,doi: 10.6038/cjg2020O0147
Ground-based GNSS VTEC constrained ionospheric correction method for atmospheric occultation
LIU CongLiang1,2,3,4, SUN YueQiang1,2,3,4, DU QiFei1,2,3,4, BAI WeiHua1,2,3,4, WANG XianYi1,2,3,4, LI Wei1,2,3
1. National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China; 2. Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China; 3. Joint Laboratory on Occultations for Atmosphere and Climate(JLOAC), Beijing 100190, China; 4. School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Ionosphere is a major error source of Global Navigation Satellite System (GNSS) radio occultation (RO), this paper proposed a ground-based GNSS vertical total electron content (VTEC) constrained ionospheric error correction method, which accounts for the ionospheric asymmetry along the occultation ray path as well as the first- and second-order ionospheric terms. It combines the ground-based GNSS VTEC horizontal change information and the ionospheric model vertical change information to estimate the electron density along the occultation ray path, then calculates the bending angle first- and second-order ionospheric error profiles under the assumption of bilateral local spherical symmetry along the inbound side and outbound side rays. The GNSS RO bending angle first- and second-order ionospheric error profiles was calculated using MetOp-A and GRACE missions observation data and international GNSS service (IGS) GNSS VTEC data from a low solar activity day (i.e., July 15, 2008) and a high solar activity day (i.e., July 15, 2013). The comparative analysis shows that the empirical model consistent with the theoretical model in terms of the second-order Residual Ionospheric Error (RIE) and with the observation data in terms of the first- and second-order bending angle ionospheric errors. Therefore, this method can be used for those RO events with low quality L2 observations and even loss of L2 signal, to correct the first- and second-order ionospheric errors to improve the bending angle accuracy and the RO observations utilization.
Angling M J, Elvidge S, Healy S B. 2018. Improved model for correcting the ionospheric impact on bending angle in radio occultation measurements. Atmospheric Measurement Techniques, 11(4):2213-2224, doi:10.5194/amt-11-2213-2018. Danzer J, Scherllin-Pirscher B, Foelsche U. 2013. Systematic residual ionospheric errors in radio occultation data and a potential way to minimize them. Atmospheric Measurement Techniques, 6(8):2169-2179, doi:10.5194/amt-6-2169-2013. Danzer J, Healy S B, Culverwell I D. 2015. A simulation study with a new residual ionospheric error model for GPS radio occultation climatologies. Atmospheric Measurement Techniques, 8(8):3395-3404, doi:10.5194/amt-8-3395-2015. Healy S B, Culverwell I D. 2015. A modification to the standard ionospheric correction method used in GPS radio occultation. Atmospheric Measurement Techniques, 8(8):3385-3393, doi:10.5194/amt-8-3385-2015. Li Z S, Wang N B, Hernández-Pajares M, et al. 2020. IGS real-time service for global ionospheric total electron content modeling. Journal of Geodesy, 94(3):32, doi:10.1007/s00190-020-01360-0. Liao M, Healy S, Zhang P. 2019. Processing and quality control of FY-3C GNOS data used in numerical weather prediction applications. Atmospheric Measurement Techniques, 12(5):2679-2692, doi:10.5194/amt-12-2679-2019. Liu C L, Kirchengast G, Zhang K F, et al. 2013. Characterisation of residual ionospheric errors in bending angles using GNSS RO end-to-end simulations. Advances in Space Research, 52(5):821-836, doi:10.1016/j.asr.2013.05.021. Liu C L. 2013. Simulation study of residual ionospheric errors in GNSS radio occultation[Ph. D. thesis] (in Chinese). Jiangsu Xuzhou:China University of Mining and Technology. Liu C L, Kirchengast G, Zhang K F, et al. 2014a. The effects of residual ionospheric errors on GPS radio occultation temperature. Chinese Journal of Geophysics (in Chinese), 57(8):2404-2414, doi:10.6038/cjg20140802. Liu C L, Zhang K F, Tan Z X, et al. 2014b. The effects of ionospheric disturbances on the accuracy of GPS radio occultation bending angle and temperature. Geomatics and Information Science of Wuhan University (in Chinese), 39(11):1334-1339, doi:10.13203/j.whugis20130282. Liu C L, Kirchengast G, Zhang K, et al. 2015. Quantifying residual ionospheric errors in GNSS radio occultation bending angles based on ensembles of profiles from end-to-end simulations. Atmospheric Measurement Techniques, 8(7):2999-3019, doi:10.5194/amt-8-2999-2015. Liu C L, Kirchengast G, Sun Y Q, et al. 2016. Study of bending angle residual ionosphric error in real RO data.//IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing, China:IEEE, 2016:4171-4174, doi:10.1109/IGARSS.2016.7730087. Liu C L, Kirchengast G, Sun Y Q, et al. 2018. Analysis of ionospheric structure influences on residual ionospheric errors in GNSS radio occultation bending angles based on ray tracing simulations. Atmospheric Measurement Techniques, 11(4):2427-2440, doi:10.5194/amt-11-2427-2018. Liu C L, Kirchengast G, Syndergaard S, et al. 2020. New higher-order correction of GNSS RO bending angles accounting for ionospheric asymmetry:evaluation of performance and added value. Remote Sensing, 12:3637, doi:10.3390/rs12213637. Melbourne W G, Davis E S, Duncan C B. 1994. The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. Pasadena:JPL Publication. Rocken C, Anthes R, Exner M, et al. 1997. Analysis and validation of GPS/MET data in the neutral atmosphere. Journal of Geophysical Research:Atmospheres, 102(D25):29849-29866, doi:10.1029/97jd02400. Schreiner W S, Weiss J P, Anthes R A, et al. 2020. COSMIC-2 radio occultation constellation:first results. Geophysical Research Letters, 47(4):e2019GL086841, doi:10.1029/2019GL086841. Sun Y Q, Bai W H, Liu C L, et al. 2018. The FengYun-3C radio occultation sounder GNOS:a review of the mission and its early results and science applications. Atmospheric Measurement Techniques, 11(10):5797-5811, doi:10.5194/amt-11-5797-2018. Von Engeln A, Andres Y, Marquardt C, et al. 2011. GRAS radio occultation on-board of Metop. Advances in Space Research, 47(2):336-347, doi:10.1016/j.asr.2010.07.028. Vorob'ev V V, Krasil'nikova T G. 1994. Estimation of the accuracy of the atmospheric refractive index recovery from doppler shift measurements at frequencies used in the navstar system. Izvestiya-Atmospheric and Oceanic Physics, 29(5):602-609. Wickert J, Schmidt T, Beyerle G, et al. 2004. The radio occultation experiment aboard CHAMP:Operational data analysis and validation of vertical atmospheric profiles. Journal of the Meteorological Society of Japan, 82(1B):381-395, doi:10.2151/jmsj.2004.381. Wickert J, Beyerle G, K nig R, et al. 2005. GPS radio occultation with CHAMP and GRACE:A first look at a new and promising satellite configuration for global atmospheric sounding. Annales Geophysicae, 23(3):653-658, doi:10.5194/angeo-23-653-2005. Yue X A, Guo Y H, Zeng Z, et al. 2016. GNSS radio occultation technique for near-Earth space environment detection. Chinese Journal of Geophysics (in Chinese), 59(4):1161-1188, doi:10.6038/cjg20160401. Zeng Z, Hu X, Zhang X X, et al. 2004. Inversion of ionospheric GPS occultation data. Chinese Journal of Geophysics (in Chinese), 47(4):578-583. Zeng Z, Sokolovskiy S, Schreiner W, et al. 2016. Ionospheric correction of GPS radio occultation data in the troposphere. Atmospheric Measurement Techniques, 9(2):335-346, doi:10.5194/amt-9-335-2016. 附中文参考文献 柳聪亮. 2013. GNSS掩星大气参数反演中电离层残差模拟研究[博士论文]. 江苏徐州:中国矿业大学. 柳聪亮, Kirchengast G, Zhang K F等. 2014a. 电离层残差对掩星反演温度精度的影响. 地球物理学报, 57(8):2404-2414, doi:10.6038/cjg20140802. 柳聪亮, Zhang K F, 谭志祥等. 2014b. 电离层干扰对GPS掩星弯曲角和温度精度的影响. 武汉大学学报·信息科学版, 39(11):1334-1339, doi:10.13203/j.whugis20130282. 乐新安, 郭英华, 曾桢等. 2016. 近地空间环境的GNSS无线电掩星探测技术. 地球物理学报, 59(4):1161-1188, doi:10.6038/cjg20160401. 曾桢, 胡雄, 张训械等. 2004. 电离层GPS掩星观测反演技术. 地球物理学报, 47(4):578-583.