MA Xiao,
DAI CongMing,
ZHAO FengMei et al
.2020.Study of stratospheric warming effects based on limb atmospheric long-wave infrared radiation signals Chinese Journal of Geophysics(in Chinese),63(12): 4312-4323,doi: 10.6038/cjg2020N0406
Study of stratospheric warming effects based on limb atmospheric long-wave infrared radiation signals
MA Xiao1,2, DAI CongMing1, ZHAO FengMei1,3, RAO RuiZhong1
1. Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; 2. Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China; 3. School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230022, China
Abstract:In this paper, we used limb atmospheric long-wave infrared background radiation observations from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment on the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite to analyze the stratospheric warming effects. Based on the limb atmospheric long-wave infrared background radiation in the range of 20~100 km between January-March 2012/2013, the spatial and temporal distribution was obtained by perturbation method. The results showed that: atmospheric long-wave infrared background radiation disturbance data more clarity show the occurrence of stratospheric warming events. In 2013, the maximum radiation disturbance amplitude under stratospheric warming at 40 km was 160%, while the maximum temperature disturbance amplitude at 40 km was only 21%. Especially when weak stratospheric warming occurred in 2012, the maximum temperature disturbance amplitude at 40 km was 16.4%, while the maximum radiation disturbance amplitude at 40 km was 91%. The latitude distribution of atmospheric long-wave infrared background radiation showed that the event occurred at high latitudes; It's longitude distribution presented a "w" shape in the range of 20~50 km; However, the extreme region of atmospheric long-wave infrared background radiation at 50 km and 80 km were the process of expanding and then shrinking with the occurrence of events at high latitudes. These indicate that the infrared radiation signals of the upper atmosphere can be used to study the effect of the stratosphere warming, especially for small disturbance events with weak fluctuations of temperature. It is also of great significance to understand the radiation formation mechanism and its changing characteristics in near space environment.
Chandran A, Collins R L, Garcia R R, et al. 2011. A case study of an elevated stratopause generated in the whole atmosphere community climate model. Geophysical Research Letters, 38(8):L08804, doi:10.1029/2010GL046566. Chandran A, Collins R L, Garcia R R, et al. 2013. A climatology of elevated stratopause events in the whole atmosphere community climate model. Journal of Geophysical Research:Atmospheres, 118(3):1234-1246. Deng S M, Chen Y J, Luo T, et al. 2009. The vertical distribution characteristics of ozone during stratospheric sudden warming. Chinese Journal of Atmospheric Sciences (in Chinese), 33(3):459-467. D rnbrack A, Gisinger S, Kaifler B. 2017. On the interpretation of gravity wave measurements by ground-based Lidars. Atmosphere, 8(3):49. Edwards D P, López-Puertas M, López-Valverde M A. 1993. Non-Local Thermodynamic equilibrium studies of the 15-μm bands of CO2 for atmospheric remote sensing. Journal of Geophysical Research:Atmospheres, 98(D8):14955-14977. Fan Z Q, Luo J, Shi H Q, et al. 2014. Accuracy assessment of temperature data from satellite sounding in near space over China. Journal of PLA University of Science and Technology (Natural Science Edition) (in Chinese), 15(2):178-183. Fritts D C, Alexander M J. 2003. Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 41(1):1003, doi:10.1029/2001RG000106. Goncharenko L P, Chau J L, Condor P, et al. 2013. Ionospheric effects of sudden stratospheric warming during moderate-to-high solar activity:Case study of January 2013. Geophysical Research Letters, 40(19):4982-4986. Gong S H, Yang G T, Xu J Y, et al. 2019. Gravity wave propagation from the stratosphere into the mesosphere studied with Lidar, meteor radar, and TIMED/SABER. Atmosphere, 10(2):81. Gong Y, Zhou Q H, Zhang S D. 2013. Atmospheric tides in the low-latitude E and F regions and their responses to a sudden stratospheric warming event in January 2010. Journal of Geophysical Research:Space Physics, 118(12):7913-7927. Gong Y, Ma Z, Lv X D, et al. 2018a. A study on the quarterdiurnal tide in the thermosphere at Arecibo during the February 2016 sudden stratospheric warming event. Geophysical Research Letters, 45(23):13142-13149. Gong Y, Li C, Ma Z, et al. 2018b. Study of the quasi-5-day wave in the MLT region by a meteor radar chain. Journal of Geophysical Research:Atmospheres, 123(17):9474-9487. Harvey V L, Hitchman M H. 1996. A climatology of the Aleutian high. Journal of the Atmospheric Sciences, 53(14):2088-2101. Hitchman M H, Gille J C, Rodgers C D, et al. 1989. The separated polar winter stratopause:a gravity wave driven climatological feature. Journal of the Atmospheric Sciences, 46(3):410-422. Jia Y, Zhang S D, Yi F, et al. 2016. Variations of Kelvin waves around the TTL region during the stratospheric sudden warming events in the Northern Hemisphere winter. Annales Geophysicae, 34(3):331-345, doi:10.5194/angeo-34-331-2016. Kanzawa H. 1989. Warm stratopause in the Antarctic winter. Journal of the Atmospheric Sciences, 46(3):435-438. Kim Y J, Campbell W, Ruston B. 2011. Hindcasting the January 2009 Arctic sudden stratospheric warming with unified parameterization of orographic drag in NOGAPS. Part II:short-range data-assimilated forecast and the impacts of calibrated radiance bias correction. Weather and Forecasting, 26(6):993-1007. Li L, Li C Y, Tan Y K, et al. 2010. Stratospheric sudden warming impacts on the weather/climate in China and its role in the influences of ENSO. Chinese Journal of Geophysics (in Chinese), 53(7):1529-1542, doi:10.3969/j.issn.0001-5733.2010.07.004. Liu D, Dai C M, Wei H L. 2016. CO2 limb radiation in the middle and upper atmosphere:comparison analysis of simulation and measurement. Infrared and Laser Engineering (in Chinese), 45(2):146-152. Liu G Q, Huang W G, Shen H, et al. 2019. Ionospheric response to the 2018 sudden stratospheric warming event at middle-and low-latitude stations over China sector. Space Weather, 17(8):1230-1240. Ma Z, Gong Y, Zhang S D, et al. 2017. Responses of quasi 2 day waves in the MLT region to the 2013 SSW revealed by a meteor radar chain. Geophysical Research Letters, 44(18):9142-9150. Mbatha N, Sivakumar V, Malinga S B, et al. 2010. Study on the impact of sudden stratosphere warming in the upper mesosphere-lower thermosphere regions using satellite and HF radar measurements. Atmospheric Chemistry and Physics, 10(7):3397-3404. Preusse P, Eckermann S D, Ern M, et al. 2009. Global ray tracing simulations of the SABER gravity wave climatology. Journal of Geophysical Research:Atmospheres, 114(D8):D08126, doi:10.1029/2008JD011214. Remsberg E E, Marshall B T, Garcia-Comas M, et al. 2008. Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. Journal of Geophysical Research:Atmospheres, 113(D17):D17101, doi:10.1029/2008JD010013. Shuai J, Huang C M, Zhang S D, et al. 2014. Elevated stratopause events during 2003-2011 revealed by SABER/TIMED temperature observations. Chinese Journal of Geophysics (in Chinese), 57(8):2465-2472, doi:10.6038/cjg20140808. Strahan S E, Douglass A R, Steenrod S D. 2016. Chemical and dynamical impacts of stratospheric sudden warmings on arctic ozone variability. Journal of Geophysical Research:Atmospheres, 121(19):11836-11851. Thayer J P, Greer K, Harvey V L. 2010. Front-like behavior in the Arctic wintertime upper stratosphere and lower mesosphere. Journal of Geophysical Research:Atmospheres, 115(D3):D00N04, doi:10.1029/2010JD014278. Tsuda T, Nishida M, Rocken C, et al. 2000. A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). Journal of Geophysical Research:Atmospheres, 105(D6):7257-7273. Xiao C Y, Hu X, Tian J H. 2009. Global temperature stationary planetary waves extending from 20 to 120 km observed by TIMED/SABER. Journal of Geophysical Research:Atmospheres, 114(D17):D17101, doi:10.1029/2008JD011349. Xiao C Y, Hu X, Wang B, et al. 2016. Quantitative studies on the variations of near space atmospheric fluctuation. Chinese Journal of Geophysics (in Chinese), 59(4):1211-1221, doi:10.6038/cjg20160404. Xie Y X, Xiao C Y, Hu X, et al. 2018. Comparison between temperature data of TIMED/SABER and AURA/MLS. Chinese Journal of Space Science (in Chinese), 38(3):361-367, doi:10.11728/cjss2018.03.361. Yang G, Li C Y, Li L. 2012. Advance in research on stratospheric sudden warming and its influences. Journal of the Meteorological Sciences (in Chinese), 32(6):694-708. Yi M J, Chen Y J. 2008. Distribution of stratospheric tracer gases after the Antarctic sudden warming. Journal of University of Science and Technology of China (in Chinese), 38(1):41-49. Zhang X Y, Meng X Y, Zhou M Q, et al. 2018. Review of the validation of atmospheric CO2 from satellite hyper spectral remote sensing. Climate Change Research (in Chinese), 14(6):602-612. Zhang Y, Xiong J G, Wan W X. 2011. Analysis on the global morphology of middle atmospheric gravity waves. Chinese Journal of Geophysics (in Chinese), 54(7):1711-1717, doi:10.3969/j.issn.0001-5733.2011.07.003. Zhu L, Jiang G Y, Xu J Y, et al. 2017. Quasi-16-day planetary waves during sudden stratospheric warming event. Chinese Journal of Space Science (in Chinese), 37(4):432-441, doi:10.11728/cjss2017.04.432. 附中文参考文献 邓淑梅, 陈月娟, 罗涛等. 2009. 平流层爆发性增温过程中臭氧的垂直分布特征. 大气科学, 33(3):459-467. 范志强, 罗杰, 石汉青等. 2014. 临近空间卫星探测温度数据的精度评估. 解放军理工大学学报(自然科学版), 15(2):178-183. 李琳, 李崇银, 谭言科等. 2010. 平流层爆发性增温对中国天气气候的影响及其在ENSO影响中的作用. 地球物理学报, 53(7):1529-1542, doi:10.3969/j.issn.0001-5733.2010.07.004. 刘栋, 戴聪明, 魏合理. 2016. 中高层大气CO2临边辐射:模拟与观测对比分析. 红外与激光工程, 45(2):146-152. 帅晶, 黄春明, 张绍东等. 2014.2003-2011年平流层顶抬升事件的SABER/TIMED观测. 地球物理学报, 57(8):2465-2472, doi:10.6038/cjg20140808. 肖存英, 胡雄, 王博等. 2016. 临近空间大气扰动变化特性的定量研究. 地球物理学报, 59(4):1211-1221, doi:10.6038/cjg20160404. 谢衍新, 肖存英, 胡雄等. 2018. TIMED/SABER与AURA/MLS临近空间探测温度数据比较. 空间科学学报, 38(3):361-367, doi:10.11728/cjss2018.03.361. 杨光, 李崇银, 李琳. 2012. 平流层爆发性增温及其影响研究进展. 气象科学, 32(6):694-708. 易明建, 陈月娟. 2008. 南极爆发性增温后微量气体的分布特征. 中国科学技术大学学报, 38(1):41-49. 张兴赢, 孟晓阳, 周敏强等. 2018. 卫星高光谱大气CO2探测精度验证研究进展. 气候变化研究进展, 14(6):602-612. 张云, 熊建刚, 万卫星. 2011. 中层大气重力波的全球分布特征. 地球物理学报, 54(7):1711-1717, doi:10.3969/j.issn.0001-5733.2011.07.003. 朱露, 姜国英, 徐寄遥等. 2017. 平流层爆发性增温事件中大气准16日行星波. 空间科学学报, 37(4):432-441, doi:10.11728/cjss2017.04.432.