FENG Wei,
WANG Chang-Qing,
MU Da-Peng et al
.2017.Groundwater storage variations in the North China Plain from GRACE with spatial constraints.Chinese Journal Of Geophysics,60(5): 1630-1642,doi: 10.6038/cjg20170502
基于GRACE的空间约束方法监测华北平原地下水储量变化
冯伟1,2, 王长青1, 穆大鹏1,3, 钟敏1, 钟玉龙1,3, 许厚泽1
1. 中国科学院测量与地球物理研究所大地测量与地球动力学国家重点实验室, 武汉 430077; 2. Institute of Geodesy and Geoinformation, University of Bonn, Bonn 53115, Germany; 3. 中国科学院大学, 北京 100049
Groundwater storage variations in the North China Plain from GRACE with spatial constraints
FENG Wei1,2, WANG Chang-Qing1, MU Da-Peng1,3, ZHONG Min1, ZHONG Yu-Long1,3, XU Hou-Ze1
1. State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China; 2. Institute of Geodesy and Geoinformation, University of Bonn, Bonn 53115, Germany; 3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:As the largest agricultural production area and an industrial, political and economic center of China, the North China Plain (NCP) is facing severe water shortages.Here we present a joint analysis of groundwater storage (GWS) variations in the NCP using the Gravity Recovery and Climate Experiment (GRACE) satellite data, hydrological models, phreatic well observations, and groundwater models.Spatial constraints with the Tikhonov regularization are applied to original temporal gravity field products from GRACE, to minimize the leakage-out effect of mass variations in the NCP.From 2002 to 2014, GRACE detects significant GWS depletion in the NCP, at a rate of -7.4±0.9 km3·a-1. The GWS depletion rate in shallow unconfined aquifers of NCP estimated from phreatic well observations is -1.2 km3·a-1, far smaller than the GRACE estimate. The significant difference between them indicates the large GWS depletion in the confined aquifers of NCP. From 2002 to 2008, the GWS rate from GRACE is -5.3±2.2 km3·a-1, which agrees well with the mean rate from two regional groundwater models (i.e., -5.4 km3·a-1). Good agreement between them confirms the potential of GRACE to estimate GWS variations in the NCP. Besides the long-term depletion of GWS in the NCP, significant interannual GWS variations are detected by GRACE and well observations, which are related to precipitation anomalies in this region.During the drought years, i.e., 2002, 2005—2009, and 2014, GWS in the NCP decreases correspondingly. In spatial domain, large GWS depletion in the piedmont region of the Taihang Mountains and central plains of NCP is detected by GRACE, which agrees with well observations and regional groundwater models. Comparing with GRACE and regional groundwater models, global hydrological models, which simulate groundwater changes, fail to estimate GWS variations in the NCP with an acceptable accuracy or a reasonable spatial pattern. For example, WGHM overestimates the GWS rate in the NCP, while PCR-GLOBWB fails to simulate the spatial pattern of GWS in the NCP. This study indicates that GRACE provides an important observation tool to assess GWS variations in the NCP.
A G, Wahr J, Zhong S J. 2013. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int.,192(2): 557-572, doi: 10.1093/gji/ggs030. Bettadpur S.2007. UTCSR Level-2 gravity field product user handbook, GRACE 327-734, Center for Space Research, The Universtiy of Texasat Austin, Austin. Cao G L, Zheng C M, Scanlon B R, et al. 2013. Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resour. Res.,49(1): 159-175, doi: 10.1029/2012WR011899. Chao B F, Gross R S. 1987. Changes in the Earth's rotation and low-degree gravitational-field induced by earthquakes. Geophys. J. Int.,91(3): 569-596. Chen J L, Li J, Zhang Z Z, et al. 2014. Long-term groundwater variations in Northwest India from satellite gravity measurements. Global Planet. Change, 116: 130-138. Cheng M K, Tapley B D. 2004. Variations in the Earth's oblateness during the past 28 years. J. Geophys. Res.,109: B09402, doi: 10.1029/2004JB003028. Döll P, Müller Schmied H, Schuh C, et al. 2014. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res.,50(7): 5698-5720, doi: 10.1002/2014WR015595. Famiglietti J S, Lo M, Ho S L, et al. 2011. Satellites measure recent rates of groundwater depletion in California's Central Valley. Geophys. Res. Lett.,38: L03403, doi: 10.1029/2010GL046442. Fan Y, van den Dool H. 2004. Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res.,109: D10102, doi: 10.1029/2003JD004345. Fei Y H, Miao J X, Zhang Z J, et al. 2009. Analysis on evolution of groundwater depression cones and its leading factors in North China Plain. Resources Science (in Chinese), 31(3): 394-399. Feng W, Zhong M, Lemoine J M, et al. 2013. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res.,49(4): 2110-2118, doi: 10.1002/wrcr. 20192. Feng W, Lemoine J M, Zhong M, et al. 2014. Mass-induced sea level variations in the Red Sea from GRACE, steric-corrected altimetry, in situ bottom pressure records, and hydrographic observations. J. Geodyn.,78: 1-7, doi: 10.1016/j.jog.2014.04.008. Foster S, Garduno H, Evans R, et al. 2004. Quaternary aquifer of the North China Plain—Assessing and achieving groundwater resource sustainability. Hydrogeol. J.,12(1): 81-93. Han Z S. 2003. Groundwater resources protection and aquifer recovery in China. Environ. Geol.,44(1): 106-111. Huang Z Y, Pan Y, Gong H L, et al. 2015. Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain. Geophys. Res. Lett.,42(6): 1791-1799, doi: 10.1002/2014GL062498. Jacob T, Wahr J, Pfeffer W T, et al. 2012. Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386): 514-518, doi: 10.1038/nature10847. Jekeli C.1981. Alternative methods to smooth the Earth's gravity field. Rep. 327, Department of Geodetic Science and Surveying, The Ohio State University, Columbus. Joodaki G, Wahr J, Swenson S. 2014. Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour. Res.,50(3): 2679-2692, doi: 10.1002/2013WR014633. Klees R, Zapreeva E A, Winsemius H C, et al. 2007. The bias in GRACE estimates of continental water storage variations. Hydrol. Earth Syst. Sci.,11(4): 1227-1241. Liu C M, Yu J J, Kendy E. 2001. Groundwater exploitation and its impact on the environment in the North China Plain. Water Int.,26(2): 265-272. Long D, Chen X, Scanlon B R, et al. 2016. Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer?. Sci. Rep.,6: 24398, doi: 10.1038/srep24398. Longuevergne L, Scanlon B R, Wilson C R. 2010. GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA. Water Resour. Res., 46(11): W11517, doi: 10.1029/2009WR008564. Ning J S. 2002. The satellite gravity surveying technology and research of Earth's gravity field. J. Geod. Geodyn.(in Chinese), 22(1): 1-5. Oleson K W, Lawrence D M, Bonan G B, et al.2013. Technical description of version 4.5 of the Community Land Model (CLM). NCARTech. Note NCAR/TN-5031STR. National Center for Atmospheric Research, Boulder, Colorado. Paulson A, Zhong S J, Wahr J. 2007. Inference of mantle viscosity from GRACE and relative sea level data. Geophys. J. Int.,171(2): 497-508, doi: 10.1111/j.1365-246X.2007.03556. x. Qin H, Cao G, Kristensen M, et al. 2013. Integrated hydrological modeling of the North China Plain and implications for sustainable water management. Hydrol. Earth Syst. Sci.,17(10): 3759-3778, doi: 10.5194/hess-17-3759-2013. Rodell M, Famiglietti J. 2002. The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. J. Hydrol.,263(1-4): 245-256. Rodell M, Houser P R, Jambor U, et al. 2004. The global land data assimilation system. Bull. Amer. Meteor. Soc.,85(3): 381-394, doi: 10.1175/bams-85-3-381. Rodell M, Chen J L, Kato H, et al. 2007. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J.,15(1): 159-166, doi: 10.1007/S10040-006-0103-7. Rodell M, Velicogna I, Famiglietti J S. 2009. Satellite-based estimates of groundwater depletion in India. Nature, 460(7258): 999-1002, doi: 10.1038/nature08238. Scanlon B R, Longuevergne L, Long D. 2012. Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour. Res.,48: W04520, doi: 10.1029/2011WR011312. Strassberg G, Scanlon B R, Rodell M. 2007. Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from the High Plains Aquifer (USA). Geophys. Res. Lett.,34: L14402, doi: 10.1029/2007GL030139. Strassberg G, Scanlon B R, Chambers D. 2009. Evaluation of groundwater storage monitoring with the GRACE satellite: Case study of the High Plains aquifer, central United States. Water Resour. Res.,45: W05410, doi: 10.1029/2008wr006892. Swenson S, Wahr J. 2007. Multi-sensor analysis of water storage variations of the Caspian Sea. Geophys. Res. Lett.,34: L16401, doi: 10.1029/2007GL030733. Swenson S, Chambers D, Wahr J. 2008a. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res.,113: B08410, doi: 10.1029/2007jb005338. Swenson S, Famiglietti J, Basara J, et al. 2008b. Estimating profile soil moisture and groundwater variations using GRACE and Oklahoma Mesonet soil moisture data. Water Resour. Res.,44(1): W01413, doi: 10.1029/2007WR00605. Su X L, Ping J S, Ye Q X. 2012. Terrestrial water variations in the North China Plain revealed by the GRACE mission, Sci. China Earth Sci.(in Chinese),42(6): 917-922. Sun W K. 2002. Satellite in low orbit (CHAMP, GRACE, GOCE) and high precision Earth gravity field: the latest progress of satellite gravity geodesy and its great influence on geoscience. J. Geod. Geodyn.(in Chinese), 22(1): 92-100. Tang J S, Cheng H W, Liu L. 2012. Using nonlinear programming to correct leakage and estimate mass change from GRACE observation and its application to Antarctica. J. Geophys. Res., 117: B11410, doi: 10.1029/2012JB009480. Tapley B D, Bettadpur S, Ries J C, et al. 2004. GRACE measurements of mass variability in the Earth system. Science, 305(5683): 503-505, doi: 10.1126/science.1099192. Tiwari V M, Wahr J, Swenson S. 2009. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett.,36: L18401, doi: 10.1029/2009GL039401. Velicogna I, Wahr J. 2006. Measurements of time-variable gravity show mass loss in Antarctica. Science, 311(5768): 1754-1756, doi: 10.1126/science.1123785. Voss K A, Famiglietti J S, Lo M H, et al. 2013. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour. Res.,49(2): 904-914, doi: 10.1002/wrcr. 20078. Wada Y, van Beek L P H, van Kempen C M, et al. 2010. Global depletion of groundwater resources. Geophys. Res. Lett.,37: L20402, doi: 10.1029/2010GL044571. Wahr J, Molenaar M, Bryan F. 1998. Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res.,103(B12): 30205-30229. Xia J, Qiu B, Li Y Y. 2012. Water resources vulnerability and adaptive management in the Huang, Huai and Hai river basins of China. Water Int.,37(5): 523-536, doi: 10.1080/02508060.2012.724649. Xu H Z. 2001. Satellite gravity missions-new hotpoint in geodesy. Science of Surveying and Mapping (in Chinese), 26(3): 1-3. Yeh P J F, Swenson S C, Famiglietti J S, et al. 2006. Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res, 42: W12203, doi: 10.1029/2006WR005374. Yi S, Sun W K. 2014. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models. J. Geophys. Res.,119(3): 2504-2517, doi: 10.1002/2013JB010860. Zhang X J, Tang Q H, Pan M, et al. 2014. A long-term land surface hydrologic fluxes and states dataset for China. J. Hydrometeorol.,15(5): 2067-2084. Zhang Z J, Fei Y H, Chen Z Y, et al. 2009. Sustainable utilization investigation and assessment of groundwater in North China Plain (in Chinese), Geoloigcal Publishing House, Beijing. Zheng C M, Liu J, Cao G L, et al. 2010. Can China cope with its water crisis? Perspectives from the North China Plain. Ground Water, 48(3): 350-354, doi: 10.1111/j.1745-6584.2010.00695_3.x. Zhong M, Duan J B, Xu H Z, et al. 2009. Trend of China land water storage redistribution at medi- and large-spatial scales in recent five years by satellite gravity observations. Chinese Sci. Bull. (in Chinese), 2009, 54(9): 1290-1294. 附中文参考文献 费宇红, 苗晋祥, 张兆吉等. 2009. 华北平原地下水降落漏斗演变及主导因素分析. 资源科学, 31(3): 394-399. 宁津生. 2002. 卫星重力探测技术与地球重力场研究. 大地测量与地球动力学, 22(1): 1-5. 苏晓莉, 平劲松, 叶其欣. 2012. GRACE卫星重力观测揭示华北地区陆地水量变化. 中国科学: 地球科学, 42(6): 917-922. 孙文科. 2002. 低轨道人造卫星(CHAMP、GRACE、GOCE)与高精度地球重力场——卫星重力大地测量的最新发展及其对地球科学的重大影响. 大地测量与地球动力学, 22(1): 92-100. 许厚泽. 2001. 卫星重力研究: 21世纪大地测量研究的新热点. 测绘科学, 26(3): 1-3. 张兆吉, 费宇红, 陈宗宇等. 2009. 华北平原地下水可持续利用调查评价. 北京: 地质出版社. 钟敏, 段建宾, 许厚泽等. 2009. 利用卫星重力观测研究近5年中国陆地水量中长空间尺度的变化趋势. 科学通报, 54(9): 1290-1294.