YANG Fan,
WANG Chang-Qing,
HSU Hou-Tse et al
.2017.Towards a more accurate temporal gravity model from GRACE observations through the kinematic orbits.Chinese Journal Of Geophysics,60(1): 37-49,doi: 10.6038/cjg20170104
Towards a more accurate temporal gravity model from GRACE observations through the kinematic orbits
YANG Fan1,2, WANG Chang-Qing2, HSU Hou-Tse1,2, ZHONG Min2, ZHOU Ze-Bing1
1. Institute of Geophysics, Huazhong University of Science and Technology, Wuhan 430074, China; 2. State Key Laboratory of Geodesy and Earth's Geodynamics Chinese Academy of Sciences, Wuhan 430077, China
Abstract:Based on the GRACE Level 1b raw data from 2005 to 2010, we have successfully produced an unconstrained monthly gravity field model (Hust-IGG01) up to d/o 60. Unlike the official data-processing centers, we employ the kinematic orbits instead of the GPS measurements as the pseudo observations. Meanwhile, an alternative model (Hust-IGG02) using the reduced-dynamic orbits as the pseudo observations is provided as well. We aim to understand the impacts of orbit pseudo observations on the accuracy of the ultimate gravity products. To this end, Hust-IGG01 and Hust-IGG02 are fully compared to each other, such that we are able to identify which type of orbit pseudo observations is more desired for the gravity inversion. Experiments demonstrate that Hust-IGG01 performs better in terms of signal to noise level than Hust-IGG02 in the following aspects:(a) Hust-IGG01 improves the estimation of geopotential coefficients at low degrees, e.g., C20C60C70C80C90, which are closer to SLR or CSR RL05 results; (b) the induced formal error of Hust-IGG01 is appropriate and comparable to that of GFZ RL05a, while Hust-IGG02 poses too optimistic formal error; (c) over three typical regions of interest (Amazon, Greenland and Sahara), the mass variation derived from Hust-IGG02 has been under-estimated by about 5%~10% with respect to those from the official products, while Hust-IGG01 has achieved a fairly comparable accuracy. The latter is supported by the numerical results such as:the yearly trend of glacial melting over Greenland derived from Hust-IGG01, CSR RL05, GFZ RL05a and JPL RL05 are -125.4 Gt·a-1, -125.4 Gt·a-1, -127.3 Gt·a-1 and -124.3 Gt·a-1, respectively; the annual amplitude of mass change in terms of EWH (equivalent water height) over Amazon is 17.56 cm, 17.40 cm, 17.46 cm and 17.22 cm, respectively; the RMS of mass change over Sahara desert is 0.87 cm, 0.77 cm, 1.10 cm and 0.87 cm, respectively. An additional validation is undertaken as well, to investigate the performance of Hust-IGG01 on the scale of basins, and the results demonstrate that the induced annual amplitude, semi-annual amplitude and yearly trend of mass variations agree with those of CSR RL05 over the 32 selected major river basins. In summary, our comparisons above suggest that an appropriate kinematic orbit is more beneficial than the reduced-dynamic orbits, for the accurate gravity recovery from the GRACE observations.
Bettadpur S. 2007. CSR Level-2 processing standards document for product release 04 GRACE. The GRACE Project. Center for Space Research, University of Texas at Austin, 327-742. Bettadpur S. 2009. Recommendation for a-priori bias and scale parameters for Level-1B ACC data (version 2). GRACE tn-02. Bruinsma S, Lemoine J, Biancale R, et al. 2010. CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv. Space Res., 45(4):587-601, doi:10.1016/j.asr.2009.10.012. Case K, Kruizinga G, Wu S. 2010. GRACE level 1B data product user handbook. JPL Publication D-22027. Chambers D P, Wahr J, Nerem R S. 2004. Preliminary observations of global ocean mass variations with GRACE. Geophysical Research Letters, 31(13):L13310. Chen Q J, Shen Y Z, Chen W, et al. 2015a. A modified acceleration-based monthly gravity field solution from GRACE data. Geophysical Journal International, 202(2):1190-1206. Chen Q J, Shen Y Z, Zhang X F, et al. 2015b. Monthly gravity field models derived from GRACE Level 1B data using a modified short-arc approach. Journal of Geophysical Research:Solid Earth, 120(3):1804-1819. Cheng M K, Tapley B D. 2004. Variations in the Earth's oblateness during the past 28 years. Journal of Geophysical Research:Solid Earth, 109(B9):B09402. Dunn C, Bertiger W, Bar-Sever Y, et al. 2003. Instrument of GRACE:GPS augments gravity measurements. GPS World, 14(2):16-28. Flechtner F, Dahle C, Gruber C, et al. 2013. Status GFZ RL05 and RL05a GRACE L2 products.//Paper presented at the GRACE Science Team Meeting. Austin, TX. Flechtner F, Dobslaw H. 2013. AOD1B product description document for product release 05. GFZ German Research Centre for Geosciences. Han B M, Xu H Z. 2007. GPS-based reduced-dynamic orbit determination for gravity field recovery. Progress in Geophysics, 22(1):73-79. Han S C, Simons F J. 2008. Spatiospectral localization of global geopotential fields from the gravity recovery and climate experiment (GRACE) reveals the coseismic gravity change owing to the 2004 Sumatra-Andaman earthquake. Journal of Geophysical Research:Solid Earth, 113(B1). Jäggi A, Beutler G, Bock H, et al. 2007. Kinematic and highly reduced-dynamic LEO orbit determination for gravity field estimation.//Dynamic Planet. Berlin Heidelberg:Springer, 354-361. Jäggi A, Beutler G, Meyer U, et al. 2012. AIUB-GRACE02S:status of GRACE gravity field recovery using the celestial mechanics approach.//Geodesy for Planet Earth. Berlin Heidelberg:Springer, 161-169. Kusche J, Schmidt R, Petrovic S, et al. 2009. Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. Journal of Geodesy, 83(10):903-913. Liu X L. 2008. Global gravity field recovery from satellite-to-satellite tracking data with the acceleration approach[Ph. D. thesis]. Dutch:Delft University of Technology. Luthcke S B, Rowlands D D, Lemoine F G, et al. 2006. Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone. Geophysical Research Letters, 33(2). Mayer-Gürr T. 2006. Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE[Ph. D. thesis]. Bonn:Universitäts und Landesbibliothek Bonn. Mayer-Gürr T, Zehentner N, Klinger B, et al. 2014. ITSG-Grace 2014:a new GRACE gravity field release computed in Graz.//Proceedings of GRACE Science Team Meeting. Potsdam. Meyer U, Dahle C, Sneeuw N, et al. 2016. The effect of pseudo-stochastic orbit parameters on GRACE monthly gravity fields:Insights from lumped coefficients.//VIII Hotine-Marussi Symposium on Mathematical Geodesy. Berlin, Heidelberg:Springer, 177-183. Petit G, Luzum B. 2010. IERS conventions (2010). DTIC Document. Ran J J, Xu H Z, Zhong M, et al. 2014. Global temporal gravity filed recovery using GRACE data. Chinese Journal of Geophysics (in Chinese), 57(4):1032-1040, doi:10.6038/cjg20140402. Richey A S, Thomas B F, Lo M H, et al. 2015. Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7):5217-5238. Ries J C, Bettadpur S, Poole S, et al. 2011. Mean background gravity processing mean gravity field from space and ground.//Paper presented at the GRACE Science Team Meeting. Rieser D, Mayer-Gürr T, Savcenko R, et al. 2012. The ocean tide model EOT11a in spherical harmonics representation. Technical Note. Schwintzer P, Reigber C. 2002. The contribution of GPS flight receivers to global gravity field recovery. Journal of Global Positioning Systems, 1(1):61-63. Shang K. 2015. GRACE time-variable gravity field recovery using an improved energy balance formalism[Ph. D. thesis]. Columbus:The Ohio State University. Švehla D, Rothacher M. 2005. Kinematic precise orbit determination for gravity field determination.//A Window on the Future of Geodesy. Berlin Heidelberg:Springer, 181-188. Swenson S, Wahr J. 2002. Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. Journal of Geophysical Research:Solid Earth (1978-2012), 107(B9):ETG 3-1-ETG 3-13. Swenson S, Chambers D, Wahr J. 2008. Estimating geocenter variations from a combination of GRACE and ocean model output. Journal of Geophysical Research:Solid Earth, 113(B8):B08410. Tapley B D, Bettadpur S, Watkins M, et al. 2004. The gravity recovery and climate experiment:Mission overview and early results. Geophysical Research Letters, 31(9). Touboul P, Willemenot E, Foulon B, et al. 1999. Accelerometers for CHAMP, GRACE and GOCE space missions:synergy and evolution. Boll. Geof. Teor. Appl., 40(3-4):321-327. Wagner C A, McAdoo D C. 2012. Error calibration of geopotential harmonics in recent and past gravitational fields. Journal of Geodesy, 86(2):99-108. Wahr J, Molenaar M, Bryan F. 1998. Time variability of the Earth's gravity field:Hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research, 103(B12):30205-30229. Wang C Q, Xu H Z, Zhong M, et al. 2015. Monthly gravity field recovery from GRACE orbits and K-band measurements using variational equations approach. Geodesy and Geodynamics, 6(4):253-260, doi:10.1016/j.geog.2015.05.010. Wang C Q, Xu H Z, Zhong M, et al. 2015. An investigation on GRACE temporal gravity field recovery using the dynamic approach. Chinese J. Geophys. (in Chinese), 58(3):756-766, doi:10.6038/cjg20150306. Zehentner N, Mayer-Guerr T. 2013. Kinematic orbits for GRACE and GOCE based on raw GPS observations.//Poster presented at the IAG Scientific Assembly. Potsdam, Germany. Zhou H, Luo Z C, Zhong B. 2015. WHU-Grace01s:A new temporal gravity field model recovered from GRACE KBRR data alone. Geodesy and Geodynamics, 6(5):316-323. 附中文参考文献 冉将军, 许厚泽, 钟敏等. 2014. 利用GRACE重力卫星观测数据反演全球时变地球重力场模型. 地球物理学报, 57(4):1032-1040, doi:10.6038/cjg20140402. 王长青, 许厚泽, 钟敏等. 2015. 利用动力学方法解算GRACE时变重力场研究. 地球物理学报, 58(3):756-766, doi:10.6038/cjg20150306.