ZOU Xian-Cai,
JIN Tao-Yong,
ZHU Guang-Bin
.2016.Research on the MASCON method for the determination of local surface mass flux with Satellite-Satellite Tracking technique.Chinese Journal Of Geophysics,59(12): 4623-4632,doi: 10.6038/cjg20161223
Research on the MASCON method for the determination of local surface mass flux with Satellite-Satellite Tracking technique
ZOU Xian-Cai1,2,3, JIN Tao-Yong1,2,3, ZHU Guang-Bin4
1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China; 2. Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan 430079, China; 3. Collaborative Innovation Center for Geospatial Technology, Wuhan 430079, China; 4. Satellite Surveying and Mapping Application Center, NASA, Beijing 100048, China
Abstract:The MASCON (Mass Concentration) method is an effective technique to study the mass flux of the shallow earth surface by using the GRACE satellite-satellite tracking (SST) technique directly. Compared with the Stokes spherical harmonic coefficient method, it can overcome the uncertainty problem of the filtering of time variable signals and effectively solve the problem of the North-South stripes in the solution of the GRACE earth gravity models. In this paper, the existing local MASCON method is improved, and the satellite precise orbit is introduced as the observations to solve for the parameters of MASCON and the relating dynamic models by combining the high-low SST and low-low SST measurements. To ensure the time variable signals be mainly derived from the inter-satellite range-rates, the variance component estimation method is used to determine a reasonable weight. By using the precise orbit as the absolute reference, a modified way to realize the MASCON is studied in this paper. Using the GRACE satellite gravity data in 2008, the water storage change in terms of equivalent water height (EWH) of Amazon basin is achieved. Compared with those computed from the GLDAS model, the time variable gravity models of the CSR Release 05 version and the MASCON solution by JPL, our results are confirmed to have good consistence, supporting the ideas on the method recommended in this article, which may provide a feasible way to study the local surface mass flux.
Chambers D P, Wahr J, Nerem R S. 2004. Preliminary observations of global ocean mass variations with GRACE. Geophysical Research Letters, 31(13): L13310. Chao B F, O'Connor W P, Chang A T C, et al. 1987. Snow load effect on the Earth's rotation and gravitational field, 1979-1985. Journal of Geophysical Research, 92(B9): 9415-9422. Chen J L, Wilson C R, Tapley B D. 2006. Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science, 313(5795): 1958-1960. Guo F X, Xiao Y, Wang F F. 2014. MASCON inversion method of earth surface mass anomaly using GRACE range rate data. Progress in Geophysics (in Chinese), 29(6): 2494-2497, doi: 10.6038/pg20140602. Ivins E R, Watkins M M, Yuan D N, et al. 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009. Journal of Geophysical Research, 116(B2): B02403. Li Q. 2014. Earth's surface mass transport recovered from temporal gravity field and its applications [Ph. D. thesis](in Chinese). Wuhan: Wuhan University. Luthcke S B, Rowls D D, Lemoine F G, et al. 2006. Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone. Geophysical Research Letters, 33(2): L02402. Luthcke S B, Sabaka T J, Loomis B D, et al. 2013. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global MASCON solution. Journal of Glaciology, 59(216): 613-631. Muller P M, Sjogren W L. 1968. MASCONs: lunar mass concentrations. Science, 161(3842): 680-684. Rodell M, Houser P R, Jambor U, et al. 2004. The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3): 381-394. Rowlands D D, Luthcke S B, Klosko S M, et al. 2005. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophysical Research Letters, 32(4): L04310. Rowlands D D, Luthcke S B, Mccarthy J J, et al. 2010. Global mass flux solutions from GRACE: A comparison of parameter estimation strategies-Mass concentrations versus Stokes coefficients. Journal of Geophysical Research, 115(B1): B01403. Sabaka T J, Rowls D D, Luthcke S B, et al. 2010. Improving global mass flux solutions from Gravity Recovery and Climate Experiment (GRACE) through forward modeling and continuous time correlation. Journal of Geophysical Research, 115(B11): B11403. Swenson S, Wahr J. 2006. Post-processing removal of correlated errors in GRACE data. Geophysical Research Letters, 33(8): L08402. Swenson S C. 2012. GRACE monthly land water mass grids NETCDF RELEASE 5.0.Ver.5.0.PO.DAAC, CA, USA. Dataset accessed at http://dx.doi.org/10.5067/TELND-NC005. Tapley B D, Bettadpur S, Ries J C, et al. 2004. GRACE measurements of mass variability in the Earth system. Science, 305(5683): 503-505. Velicogna I, Wahr J. 2006. Measurements of time-variable gravity show mass loss in Antarctica. Science, 311(5768): 1754-1756. Wahr J, Molenaar M, Bryan F. 1998. Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research, 103(B12): 30205-30229. Wahr J, Swenson S, Zlotnicki V, et al. 2004. Time-variable gravity from GRACE: first results. Geophysical Research Letters, 31(11): L11501. Watkins M M, Yuan D N, Kuang D, et al. 2005. GRACE harmonic and MASCON solutions at JPL. Eos Trans. AGU, 86(52), Fall Meet. Suppl., Abstract G22A-04, San Francisco, Calif. Watkins M M, Wiese D N, Yuan D N, et al. 2015. Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons. Journal of Geophysical Research, 120(4): 2648-2671. Wiese D N. 2015. GRACE monthly global water mass grids NETCDF RELEASE 5.0.Ver.5.0.PO.DAAC,CA,USA. Dataset accessed at http://dx.doi.org/10.5067/TEMSC-OCL05. Wu S, Kruizinga G. 2004. Algorithm theoretical basis document for GRACE Level-1B data procesing. JPL D-27672, Version 1.0.California. Zhu C D, Lu Y, Shi H L, et al. 2015. Trends of glacial mass changes in High Asia from satellite gravity observations. Chinese J. Geophys. (in Chinese), 58(3): 793-801, doi: 10.6038/cjg20150309. Zou X C. 2007. Theory of satellite orbit and earth gravity field determination [Ph. D. thesis](in Chinese). Wuhan: Wuhan University. Zou X C, Li J C, Zhong L P, et al. 2015. Calibration of the accelerometers onboard GRACE with the dynamic method. Geomatics and Information Science of Wuhan University (in Chinese), 40(3): 357-360. Zou X C, Li J C. 2016. Study on the earth gravity modeling by GOCE in individual accelerometer mode. Chinese J. Geophys. (in Chinese), 59(4): 1260-1266, doi: 10.6038/cjg20160408. Zou X C, Zhong L P, Li J C. 2016. Simultaneous solution for precise satellite orbit and earth gravity model. Chinese J. Geophys. (in Chinese), 59(7): 2413-2423. 郭飞霄, 肖云, 汪菲菲. 2014. 利用GRACE星间距离变率数据反演地球表层质量变化的MASCON方法. 地球物理学进展, 29(6): 2494-2497, doi: 10.6038/pg20140602. 李琼. 2014. 地表物质迁移的时变重力场反演方法及其应用研究[博士学位论文]. 武汉: 武汉大学. 朱传东, 陆洋, 史红岭等. 2015. 高亚洲冰川质量变化趋势的卫星重力探测. 地球物理学报, 58(3): 793-801, doi: 10.6038/cjg20150309. 邹贤才. 2007. 卫星轨道理论与地球重力场模型的确定[博士学位论文]. 武汉: 武汉大学. 邹贤才, 李建成, 衷路萍等. 2015. 动力法校准GRACE星载加速度计. 武汉大学学报: 信息科学版, 40(3): 357-360. 邹贤才, 李建成. 2016. 单加速度计模式下的GOCE卫星重力场建模方法研究. 地球物理学报, 59(4): 1260-1266, doi: 10.6038/cjg20160408. 邹贤才, 衷路萍, 李建成. 2016. 卫星精密定轨与重力场建模的同解法. 地球物理学报, 59(7): 2413-2423.