DUAN HuRong,
KANG MingZhe,
WU ShaoYu et al
.2020.Uplift rate of the Tibetan Plateau constrained by GRACE time-variable gravity field Chinese Journal of Geophysics(in Chinese),63(12): 4345-4360,doi: 10.6038/cjg2020O0262
Uplift rate of the Tibetan Plateau constrained by GRACE time-variable gravity field
DUAN HuRong1, KANG MingZhe1, WU ShaoYu1, CHEN LingKang2, JIAO JiaShuang3
1. College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China; 2. Guangdong Petrochemical College Faculty of Science, Maoming Guangdong 525000, China; 3. School of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China
Abstract:The uplift of the Tibetan Plateau (TP) has an important impact on the climate of China, Asia and the world. It is of great significance to study the crustal uplift rate of the TP. In this paper, using the gravity data of satellites with high coverage from 2004 to 2015, the rate of gravity change caused by crustal uplift is obtained by removing the gravity effect of land water storage. The distribution of crustal uplift rate is inversed based on the model between vertical deformation of vertical cuboid and gravity change on the TP. The results of the study show that the uplift rate of the TP is unevenly distributed at a spatial scale of 300 km. With the Gangdise-Tanggula Mountain-Xianshuihe River fault as the boundary, the uplift rate on both sides is quite different. To the south of the borderline, the average uplift rate of the area along the Himalayan thrust nappe belt is 2.01±0.87 mm·a-1, in which the uplift rates of the Indian Plate on the west and the Myanmar Plate on the east are 2.43 mm·a-1 and 2.89 mm·a-1, respectively. The uplift rate of the area between the two plates is about 0.69 mm·a-1. To the north of the borderline, except for the Tianshan area and the North China Plate, the uplift rate is about 1 mm·a-1, the rate is close to 0 mm·a-1. We found that both the rate gradient zones of uplift pass through the normal fault zone, one of which is from Kathmandu to the Tarim Basin and happens to pass through the normal fault zone inside the TP, the other of which is from the Naga Mountains to the Sichuan Basin and happens to be cross the Dali normal fault zone. The inversion rate of the uplift is in good agreement with the previous GPS observations, providing theoretical support for scientific issues such as uplift of the TP and crustal thickening of the crust.
An Z S, Kutzbach J E, Prell W L, et al. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411, 62-66. Chen J L, Rodell M, Wilson C R, et al. 2005. Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophysical Research Letters, 32(14):L14405, doi:10.1029/2005GL022964. Chen J L, Wilson C R, Tapley B D. 2013. Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nature Geoscience, 6(7):549-552, doi:10.1038/ngeo1829. Chen J L, Li J, Zhang Z Z, et al. 2014. Long-term groundwater variations in Northwest India from satellite gravity measurements. Global and Planetary Change, 116:130-138, doi:10.1016/j.gloplacha.2014.02.007. Chen J L, Wilson C R, Li J, et al. 2015. Reducing leakage error in GRACE-observed long-term ice mass change:a case study in West Antarctica. Journal of Geodesy, 89(9):925-940, doi:10.1007/s00190-015-0824-2. Chen M, Niu F L, Tromp J, et al. 2017. Lithospheric foundering and underthrusting imaged beneath Tibet. Nature Communications, 8:15659, doi:10.1038/ncomms15659. Chen Y J. 2019. A investigation for the crustal seismicity and the seismogenic factors in the Himalaya region and the Tianshan region. Acta Seismologica Sinica (in Chinese), 35(2):305-318. Cheng M K, Tapley B D, Ries J C. 2013. Deceleration in the Earth's oblateness. Journal of Geophysical Research:Solid Earth, 118(2):740-747, doi:10.1002/jgrb.50058. Dewey J F, Burke C A. 1973. Tibetan, Variscan, and Precambrian basement reactivation:products of continental collision. The Journal of Geology, 81(6):683-692. Duan H R, Zhang Y Z, Xu H J, et al. 2011. Velocity of crustal vertical movement computed by using GRACE data in China's western region. Progress in Geophysics (in Chinese), 26(4):1201-1205, doi:10.3969/j.issn.1004-2903.2011.04.009. Duan H R, Zhou S Y, Li R, et al. 2020. Relationship between the slip distribution of the Lushan earthquake fault and the Wenchuan earthquake fault. Chinese Journal of Geophysics (in Chinese), 63(1):210-222, doi:10.6038/cjg2020N0042. Fang X M, Xu X H, Song C H, et al. 2007. High resolution rock magnetic records of Cenozoic sediments in the Linxia Basin and their implications on drying of Asian inland. Quaternary Sciences (in Chinese), 27(6):989-1000. Farrell W E. 1972. Deformation of the Earth by surface loads. Reviews of Geophysics, 10(3):761-797, doi:10.1029/RG010i003p00761. Gao C C, Lu Y, Shi H L, et al. 2019. Detection and analysis of ice sheet mass changes over 27 Antarctic drainage systems from GRACE RL06 data. Chinese Journal of Geophysics (in Chinese), 62(3):864-882, doi:10.6038/cjg2019M0586. Jacob T, Wahr J, Pfeffer W T, et al. 2012. Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386):514-518, doi:10.1038/nature10847. Jiao J S, Zhang Y Z, Yin P, et al. 2019. Changing Moho beneath the Tibetan Plateau revealed by GRACE observations. Journal of Geophysical Research:Solid Earth, 124(6):5907-5923, doi:10.1029/2018JB016334. Laske G, Masters G, Ma Z T, et al. 2015. Update on CRUST1.0-A 1-degree global model of earth's crust.//EGU General Assembly 2013. Vienna, Austria:EGU, 15:2658. Li J J. 1999. Studies on the Geomorphological evolution of the Qinghai-Xizang (Tibetan) plateau and Asian monsoon. Marine Geology & Quaternary Geology (in Chinese), 19(1):1-12. Li J J, Fang X M, Pan B T, et al. 2001. Late Cenozoic intensive uplift of Qinghai-Xizang plateau and its impacts on environments in surrounding area. Quaternary Sciences (in Chinese), 21(5):381-391. Li P E, Zhu A Y, Han W, et al. 2012. Numerical simulation of geodynamic problems-Take present uplift of Qinghai-Tibet plateau as example. Seismological and Geomagnetic Observation and Research (in Chinese), 33(5-6):1-6. Li Q, Tan K, Zhao B, et al. 2019. Slip rate change of East Kunlun fault and its stress effect on 2017 Jiuzhaigou earthquake. Chinese Journal of Geophysics (in Chinese), 62(3):912-922, doi:10.6038/cjg2019M0302. Li T M, Zhu Y Q, Yang Y L, et al. 2019. The current slip rate of the Xianshuihe fault zone calculated using multiple observational data of crustal deformation. Chinese Journal of Geophysics (in Chinese), 62(4):1323-1335, doi:10.6038/cjg2019L0723. Liang S M, Gan W J, Shen C Z, et al. 2013. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. Journal of Geophysical Research:Solid Earth, 118(10):5722-5732, doi:10.1002/2013JB010503. Liu D S, Zhang X S, Xiong S F, et al. 1999. Qinghai-Xizang plateau glacial environment and global cooling. Quaternary Sciences (in Chinese), (5):385-396. Liu J, Fang J, Li H L, et al. 2015. Secular variation of gravity anomalies within the Tibetan Plateau derived from GRACE data. Chinese Journal of Geophysics (in Chinese), 58(10):3496-3506, doi:10.6038/cjg20151006. Liu J R. 2018. Accurate determination of late quaternary slip rate of the Aksay Segment within the Altyn tagh fault[Master's thesis] (in Chinese). Beijing:Institute of Geology, China Earthquake Administration. Liu X X. 2018. The interseismic deformation of the main faults in the east boundary of Sichuan-Yunnan block and the southern segment of the Longmenshan fault zone. Recent Developments in World Seismology (in Chinese), (3):42-45. Luo Z B, Wang S L, Liu J M, et al. 2020. Discovery of cobalt-bearing nickel mineralized ultramafic rocks at the aeromagnetic anomaly C-2013-198, eastern end of the west kunlun orogenic belt and its significance for prospecting. Geology and Exploration (in Chinese), 56(3):512-522. Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia:effects of a continental collision:features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 189(4201):419-426, doi:10.1126/science.189.4201.419. Molnar P, Stock J M. 2009. Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 28(3):TC3001, doi:10.1029/2008TC002271. Pan G T, Wang L Q, Zhang W P, et al., 2010. Tectonic map and the Qinghai-Tibetan Plateau and adjacent areas (1:1500000)(in Chinese).Beijing:Geological Publishing (in Chinese). 1-153. Pan, Y J, Shen, W B, Shum, C. K et al. 2018. Spatially varying surface seasonal oscillations and 3-D crustal deformation of the Tibetan Plateau derived from GPS and GRACE data. Earth and Planetary Science Letters, 502, 12-22, doi:10.1016/j.epsl.2018.08.037. Paulson A, Zhong S J, Wahr J. 2007. Inference of mantle viscosity from GRACE and relative sea level data. Geophysical Journal International,171(2):497-508. doi:10.1111/j.1365-246X.2007.03556.x. Peng J B, Ma R Y, Lu Q Z, et al., 2004. Geological hazards effects of uplift of Qinghai-Tibet Plateau. Advances in Earth Sciences(in Chinese), 19(3):457-466. Ray R D, Rowlands D D, Egbert G D. 2003. Tidal models in a new era of satellite gravimetry. Space Science Reviews,108(1-2):271-282, doi:10.1023/A:1026223308107. Royden L H, Burchfiel B C, Van Der Hilist R D. 2008. The geological evolution of the Tibetan Plateau. Science.321(5892):1054-1058, doi:10.1126/science.1155371. Song S G, Bi H Z, Qi S S, et al. 2018. HP-UHP metamorphic belt in the East Kunlun Orogen:Final closure of the proto-tethys oceanand formation of the Pan-North-China Continent. Journal of Petrology, 59(11):2043-2060, doi:10.1093/petrology/egy089. Steffen H, Gitlein O, Denker H, et al. 2009. Present rate of uplift in Fennoscandia from GRACE and absolute gravimetry. Tectonophysics, 474(1-2):69-77, doi:10.1016/j.tecto.2009.01.012. Sun W K, Wang Q, Li H, et al. 2009. Gravity and GPS measurements reveal mass loss beneath the Tibetan Plateau:Geodetic evidence of increasing crustal thickness. Geophysical Research Letters,36(2):206-218, doi:10.1029/2008GL036512. Swenson S, Wahr J. 2006. Post-processing removal of correlated errors in GRACE data. Geophysical Research Letters, 33(8):L08402, doi:10.1029/2005GL025285. Tang F T, Song J, Cao Z Q, et al. 2010. The movement characters of main faults around Eastern Himalayan Syntaxis revealed by the latest GPS data. Chinese Journal of Geophysics (in Chinese), 53(9):2119-2128, doi:10.3969/j.issn.0001-5733.2010.09.012. Teng J W, Si X, Wang Q S, et al. 2015. Collation and stipulation of the core science problems and theoretical concept in the geoscience study on the Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 58(1):103-124, doi:10.6038/cjg20150109. Wahr J, Molenaar M, Bryan F. 1998. Time variability of the Earth's gravity field:Hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research:Solid Earth,103(B12):30205-30229, doi:10.1029/98JB02844. Wahr J, Swenson S, Zlotnicki V, et al. 2004. Time-variable gravity from GRACE:First results. Geophysical Research Letters, 31(11):L11501, doi:10.1029/2004GL019779. Wang H S, Patrick W U, Xu H Z. 2009. A review of research in glacial isostatic adjustment. Progressin Geophysics (in Chinese), 24(6):1958-1967, doi:10.3969/j.issn.1004-2903.2009.06.005. Wang L Q, Pan G T, Ding J, et al. 2010. Geological Map and Instructions for the Tibet Plateau and its Neighboring Areas (1:1500000) (in Chinese). Beijing:Geological Publishing, 1-288. Wang Y, Zhang W M, Zhan J G, et al. 2004. Gravity change detected by repeated absolute gravity measurements in the western Yunnan and Lhasa, China and its implication. Chinese Journal of Geophysics (in Chinese), 47(1):95-100. Wang Y, Hong M, Shao D S, et al. 2018. Study on dynamic characteristics of crustal deformation in Yunnan area using GPS. Journal of Seismological Research (in Chinese), 41(3):368-374. Xing L L, Sun W K, Li H, et al. 2011. Present-day crust thickness increasing beneath the Qinghai-Tibetan Plateau by using geodetic data at Lhasa station. Acta Geodaetica et Cartographica Sinica (in Chinese), 40(1):41-44, 58. Xing L L, Wang L H, Hu M Z, et al. 2017. Determination of crust uplifting and thickening of Qinghai-Tibetan Plateau from time-variable gravity measurements. Geomatics and Information Science of Wuhan University (in Chinese), 42(5):569-574. Xu H C, Wang H, Cao J L. 2018. Slip rates of the major faults in the northeastern Tibetan Plateau and their geodynamic implications. Earthquake (in Chinese), 38(3):13-23. Yi S, Sun W K. 2014. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models. Journal of Geophysical Research:Solid Earth, 119(3):2504-2517, doi:10.1002/2013JB010860. Yi S, Freymueller J T, Sun W K. 2016. How fast is the middle-lower crust flowing in eastern Tibet? A constraint from geodetic observations. Journal of Geophysical Research:Solid Earth, 121(9):6903-6915, doi:10.1002/2016JB013151. Yin P. 2018. Gravity changes of the Nepal MS8.1 earthquake derived from GRACE data[Master's thesis] (in Chinese). Xi'an China:Chang'an University. Zhang G Q, Xie H J, Kang S C, et al. 2011. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009). Remote Sensing of Environment, 115(7):1733-1742, doi:10.1016/j.rse.2011.03.005. Zhang P Z, Deng Q D, Zhang Z Q, et al. 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China. Scientia Sinica Terrae (in Chinese), 43(10):1607-1620. Zhang W M, Wang Y, Xu H Z, et al. 2000. Test of the uplift of Tibetan Plateau by FG5 absolute gravimeter at Lhasa station. Chinese Science Bulletin, 46(3):256-258. [SJ]Zhao J, Jiang Z S, Niu A F, et al. 2017. Characteristics of fault locking and fault slip deficit in the main Himalaya thrust fault. Geomatics and Information Science of Wuhan University (in Chinese), 42(12):1756-1764. Zou Z B, Xing L L, Li H, 2008. Research on grace satellite gravity changes in Chineses mainland and its vicinity. Journal of Geodesy and Geodynamics (in Chinese),28(1):23-27. 附中文参考文献 陈应君. 2019. 喜马拉雅地区与天山地区地壳强地震的孕震因素探讨. 地震学报, 35(2):305-318. 段虎荣, 张永志, 徐海军等. 2011. GRACE数据反演中国西部地壳垂直运动速率. 地球物理学进展, 26(4):1201-1205, doi:10.3969/j.issn.1004-2903.2011.04.009. 段虎荣, 周仕勇, 李闰等. 2020. 芦山地震断层的滑动分布与汶川地震断层的关系. 地球物理学报, 63(1):210-222, doi:10.6038/cjg2020N0042. 方小敏, 徐先海, 宋春晖等. 2007. 临夏盆地新生代沉积物高分辨率岩石磁学记录与亚洲内陆干旱化过程及原因. 第四纪研究, 27(6):989-1000. 高春春, 陆洋, 史红岭等. 2019. 基于GRACE RL06数据监测和分析南极冰盖27个流域质量变化. 地球物理学报, 62(3):864-882, doi:10.6038/cjg2019M0586. 高孟潭. 2015. GB 18306-2015《中国地震动参数区划图》宣贯教材. 北京:中国质检出版社, 中国标准出版社. 李吉均. 1999. 青藏高原的地貌演化与亚洲季风. 海洋地质与第四纪地质, 19(1):1-12. 李吉均, 方小敏, 潘保田等. 2001. 新生代晚期青藏高原强烈隆起及其对周边环境的影响. 第四纪研究, 21(5):381-391. 李平恩, 祝爱玉, 韩炜等. 2012. 地球动力学问题的数值模拟研究——以青藏高原现今隆升研究为例. 地震地磁观测与研究, 33(5-6):1-6. 李琦, 谭凯, 赵斌等. 2019. 东昆仑断裂滑动速率变化及其对2017年九寨沟地震的应力加载. 地球物理学报, 62(3):912-922, doi:10.6038/cjg2019M0302. 李铁明, 祝意青, 杨永林等. 2019. 综合利用多种地壳形变观测资料计算鲜水河断裂带现今滑动速率. 地球物理学报, 62(4):1323-1335, doi:10.6038/cjg2019L0723. 刘东生, 张新时, 熊尚发等. 1999. 青藏高原冰期环境与冰期全球降温. 第四纪研究, (5):385-396. 刘杰, 方剑, 李红蕾等. 2015. 青藏高原GRACE卫星重力长期变化. 地球物理学报, 58(10):3496-3506, doi:10.6038/cjg20151006. 刘金瑞. 2018. 阿尔金断裂阿克塞段晚第四纪滑动速率精确厘定[硕士论文]. 北京:中国地震局地质研究所. 刘晓霞. 2018. 川滇块体东边界中段主要断裂及龙门山断裂带南段震间变形状态研究. 国际地震动态, (3):42-45. 罗志波, 王身龙, 刘桂梅等. 2020. 西昆仑造山带东端新C-2013-198航磁异常处含钴镍矿化超镁铁质岩的发现及其找矿意义. 地质与勘探, 56(3):512-522. 潘桂棠, 王立全, 张万平等. 2010. 青藏高原及邻区大地构造图及说明书(1:1500000). 北京:地质出版社, 1-153. 彭建兵, 马润勇, 卢全中等. 2004. 青藏高原隆升的地质灾害效应. 地球科学进展, 19(3):457-466. 孙文科, 王琪, 李辉等. 2010. 利用绝对重力、GPS和GRACE数据研究青藏高原动力学变化.//中国地球物理学会第二十六届年会暨中国地震学会第十三次学术大会论文集. 宁波:中国地球物理学会年会, 中国地震学会学术大会. 唐方头, 宋键, 曹忠权等. 2010. 最新GPS数据揭示的东构造结周边主要断裂带的运动特征. 地球物理学报, 53(9):2119-2128, doi:10.3969/j.issn.0001-5733.2010.09.012. 滕吉文, 司芗, 王谦身等. 2015. 青藏高原地球科学研究中的核心问题与理念的厘定. 地球物理学报, 58(1):103-124, doi:10.6038/cjg20150109. 汪汉胜, Patrick W U, 许厚泽. 2009. 冰川均衡调整(GIA)的研究. 地球物理学进展, 24(6):1958-1967, doi:10.3969/j.issn.1004-2903.2009.06.005. 王立全, 潘桂棠, 丁俊等. 2010. 青藏高原及邻区地质图及说明书(1:1500000). 北京:地质出版社, 1-288. 王勇, 张为民, 詹金刚等. 2004. 重复绝对重力测量观测的滇西地区和拉萨点的重力变化及其意义. 地球物理学报, 47(1):95-100. 王岩, 洪敏, 邵德胜等. 2018. 基于GPS资料研究云南地区地壳形变动态特征. 地震研究, 41(3):368-374. 向树元, 王岸, 王国灿等. 2013. 青藏高原及邻区第四纪地质与地貌图及说明书(1:3000000). 武汉:中国地质大学出版社, 1-104. 邢乐林, 孙文科, 李辉等. 2011. 用拉萨点大地测量资料检测青藏高原地壳的增厚. 测绘学报, 40(1):41-44, 58. 邢乐林, 王林海, 胡敏章等. 2017. 时变重力测量确定青藏高原地壳隆升与增厚速率. 武汉大学学报·信息科学版, 42(5):569-574. 徐化超, 王辉, 曹建玲. 2018. 青藏高原东北缘主要断裂滑动速率及其动力学意义. 地震, 38(3):13-23. 尹鹏. 2018. 尼泊尔MS8.1地震GRACE卫星重力变化研究[硕士论文]. 西安:长安大学. 张培震, 邓起东, 张竹琪等. 2013. 中国大陆的活动断裂、地震灾害及其动力过程. 中国科学:地球科学, 43(10):1607-1620. 张为民, 王勇, 许厚泽等. 2000. 用FG5绝对重力仪检测青藏高原拉萨点的隆升. 科学通报, 45(20):2213-2216. 赵静, 江在森, 牛安福等. 2017. 喜马拉雅主逆冲断层闭锁程度与滑动亏损特征研究. 武汉大学学报·信息科学版, 42(12):1756-1764. 邹正波, 邢乐林, 李辉等. 2008. 中国大陆及邻grace卫星重力变化研究. 大地测量与地球动力学, 28(1):23-27.