WANG ZhiYang,
LI YouMing,
BAI WenLei
.2020.Numerical modelling of exciting seismic waves for a simplified bridge pier model under high-speed train passage over the viaduct Chinese Journal of Geophysics(in Chinese),63(12): 4473-4484,doi: 10.6038/cjg2020O0156
Numerical modelling of exciting seismic waves for a simplified bridge pier model under high-speed train passage over the viaduct
WANG ZhiYang1,3, LI YouMing2,3, BAI WenLei1,3
1. Beijing University of Chemical Technology, Beijing 100029, China; 2. Key Laboratory of Petroleum Resource Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 3. The Joint Research Group of High-Speed Rail Seismology, Beijing 100029, China
Abstract:Most of the time, high-speed trains run on the viaducts, and when high-speed trains pass over the viaducts, the process of exciting seismic waves is not exactly the same as that of exciting seismic waves on the ground due to exciting seismic waves through bridge piers coupled with the ground. We explore the mechanism and process of excitation of seismic waves through bridge piers when high-speed trains passage over the viaducts. To simplify the analysis, we consider the high-speed train as a moving linear source along one direction, and the high-speed train exerts forces on bridge piers which insert into the ground at a depth of tens of meters, coupled with the topsoil and surrounding rock, through front and rear wheels of each car. After this analysis, the time function of high-speed-train source under high-speed train passage over the viaduct is derived. Meanwhile, we derive the elastic wave equation including the characteristic scale parameter, based on the modified couple stress theory in the frame of the generalized continuum mechanics, and apply this elastic wave equation, the time function of the high-speed-train source and the optimized staggered grid finite difference scheme in performing numerical modelling. By comparing and analyzing the synthetic seismograms with the field seismograms, the conclusions will provide a theoretical basis for further research of imaging and inversion based on train source.
Aifantis E C. 1999. Strain gradient interpretation of size effects. International Journal of Fracture, 95(1-4):299-314. Auffray N, Le Quang H, He Q C. 2013. Matrix representations for 3D strain-gradient elasticity. Journal of the Mechanics and Physics of Solids, 61(5):1202-1223. Bao Y X, Mao Z Z. 1993. Diffraction of Elastic Waves and Dynamic Stress Concentrations (in Chinese). Liu D K, Su X Y Trans. Beijing:Science Press. Bažant Z P. 2002. Scaling of dislocation-based strain-gradient plasticity. Journal of the Mechanics and Physics of Solids, 50(3):435-448. Bažant Z P, Pang S D. 2007. Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture. Journal of the Mechanics and Physics of Solids, 55(1):91-131. Burke M, Kingsbury H B. 1984. Response of poroelastic layers to moving loads. International Journal of Solids and Structures, 20(5):499-511. Cai Y Q, Sun H L, Xu C J. 2008. Response of railway track system on poroelastic half-space soil medium subjected to a moving train load. International Journal of Solids and Structures, 45(18-19):5015-5034. Cai Y Q, Cao Z G, Sun H L, et al. 2009. Dynamic response of pavements on poroelastic half-space soil medium to a moving traffic load. Computers and Geotechnics, 36(1-2):52-60. Cao J, Chen J B. 2019. Solution of Green function from a moving line source and the radiation energy analysis:A simplified modeling of seismic signal induced by high-speed train. Chinese Journal of Geophysics (in Chinese), 62(6):2303-2312, doi:10.6038/cjg2019M0654. Chen J B, Cao J. 2020. Green's function for three-dimensional elastic wave equation with a moving point source on the free surface with applications. Geophysical Prospecting, 68(4):1281-1290. Cole J D, Huth J H. 1958. Stresses produced in a half plane by moving loads. Journal of Applied Mechanics, 25(12):433-436. Cosserat E, Cosserat F. 1909. Théorie des Corps Déformables. Hermann, Paris.https://doi.org/10.1038/081067a0. De Domenico D, Askes H, Aifantis E C. 2019. Gradient elasticity and dispersive wave propagation:model motivation and length scale identification procedures in concrete and composite laminates. International Journal of Solids and Structures, 158:176-190. Gao G Y, Zhao H, Zhang B, et al. 2013. Analysis of ground vibration induced by trains on saturated layered ground. Journal of Tongji University (Natural Science) (in Chinese), 41(12):1805-1811. Gao G Y, Yao S F, Sun Y M. 2019. Investigating ground vibration induced by high-speed train loads on unsaturated soil using 2.5D FEM. Earthquake Engineering and Engineering Dynamics (in Chinese), 39(5):28-39. Hadjesfandiari A R, Dargush G F. 2011. Couple stress theory for solids. International Journal of Solids and Structures, 48(18):2496-2510. Halliday D, Curtis A, Kragh E. 2008. Seismic surface waves in a suburban environment:Active and passive interferometric methods. The Leading Edge, 27(2):210-218. Huang W X, Xu K. 2014. Characteristic length in Cosserat media modelling of granular materials (in Chinese).//Proceedings of the Conference on Computational Mechanics of Granular Materials. Lanzhou:Lanzhou University Press, 279-283. Jung W Y, Han S C, Park W T. 2014. A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium. Composites Part B:Engineering, 60:746-756. Lam D C C, Yang F, Chong A C M, et al. 2003. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51(8):1477-1508. Li J, Gao G Y, Zhao H. 2013. Study on ground vibration induced by train load in transversely isotropic soil using 2.5D finite element method. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 32(1):78-87. Liu L, Jiang Y R. 2019. Attribution extraction and feature analysis for large amount of high-speed-train seismic events. Chinese Journal of Geophysics (in Chinese), 62(6):2313-2320, doi:10.6038/cjg2019M0682. Lombaert G, Degrande G, Clouteau D. 2001. The influence of the soil stratification on free field traffic-induced vibrations. Archive of Applied Mechanics, 71(10):661-678. Metrikine A V, Popp K. 2000. Steady-state vibrations of an elastic beam on a visco-elastic layer under moving load. Archive of Applied Mechanics, 70(6):399-408. Mindlin R D, Tiersten H F. 1962. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis, 11(1):415-448. Polizzotto C. 2013. A second strain gradient elasticity theory with second velocity gradient inertia-Part I:Constitutive equations and quasi-static behavior. International Journal of Solids and Structures, 50(24):3749-3765. Quiros D A, Brown L D, Kim D. 2016. Seismic interferometry of railroad induced ground motions:body and surface wave imaging. Geophysical Journal International, 205(1):301-313. Reddy J N, Kim J. 2012. A nonlinear modified couple stress-based third-order theory of functionally graded plates. Composite Structures, 94(3):1128-1143. Shiraishi K, Tanaka M, Onishi K, et al. 2006. Application of seismic interferometry to subsurface imaging (2). Proceedings of 10th International Symposium on RAEG, Kyoto University Geophysical Society.https://doi.org/10.3997/2352-8265.20140076. Shaat M, Mahmoud F F, Gao X L, et al. 2014. Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. International Journal of Mechanical Sciences, 79:31-37. Suiker A S J, De Borst R, Chang C S. 2001. Micro-mechanical modelling of granular material. Part 1:Derivation of a second-gradient micro-polar constitutive theory. Acta Mechanica, 149(1-4):161-180. Takemiya H. 2001. Ground vibrations alongside tracks induced by high-speed trains:prediction and mitigation.//Krylov V V ed. Noise and Vibration from High-Speed Trains. London:Thomas Telford Publishing, 347-393. Toupin R A. 1962. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis, 11(1):385-414. Toupin R A. 1964. Theories of elasticity with couple-stress. Archive for Rational Mechanics and Analysis, 17(2):85-112. Wang X K, Chen W C, Wen J C, et al. 2019a. The applications of synchrosqueezing time-frequency analysis in high-speed train induced seismic data processing. Chinese Journal of Geophysics (in Chinese), 62(6):2328-2335, doi:10.6038/cjg2019M0658. Wang X K, Chen J Y, Chen W C, et al. 2019b. Sparse modeling of seismic signals produced by high-speed trains. Chinese Journal of Geophysics (in Chinese), 62(6):2336-2343, doi:10.6038/cjg2019M0662. Xia H, Cao Y M, De Roeck G. 2010. Theoretical modeling and characteristic analysis of moving-train induced ground vibrations. Journal of Sound and Vibration, 329(7):819-832. Yang F, Chong A C M, Lam D C C, et al. 2002. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39(10):2731-2743. Zhang G L, He C J, Li Y, et al. 2019. Wavelet time function of high-speed-train seismic source and verification. Chinese Journal of Geophysics (in Chinese), 62(6):2344-2354, doi:10.6038/cjg2019M0661. Zhang H L, Wang B L, Ning J Y, et al. 2019. Interferometry imaging using high-speed-train induced seismic waves. Chinese Journal of Geophysics (in Chinese), 62(6):2321-2327, doi:10.6038/cjg2019M0676. Zhou F X, Cao Y C, Zhao W G. 2015. Analysis of dynamic response of inhomogeneous subgrade under moving loads. Rock and Soil Mechanics, 36(7):2027-2033. 附中文参考文献 鲍亦兴, 毛昭宙. 1993. 弹性波的衍射与动应力集中. 刘殿魁, 苏先越译. 北京:科学出版社. 曹健, 陈景波. 2019. 移动线源的Green函数求解及辐射能量分析:高铁地震信号简化建模. 地球物理学报, 62(6):2303-2312, doi:10.6038/cjg2019M0654. 高广运, 赵宏, 张博等. 2013. 饱和分层地基上列车运行引起的地面振动分析. 同济大学学报(自然科学版), 41(12):1805-1811. 高广运, 姚哨峰, 孙雨明. 2019.2.5D有限元分析高铁荷载诱发非饱和土地面振动. 地震工程与工程振动, 39(5):28-39. 黄文雄,徐可. 2014. 颗粒材料Cosserat介质模拟中的特征长度.//颗粒材料计算力学会议论文集. 兰州:兰州大学出版社,279-283. 李佳, 高广运, 赵宏. 2013. 基于2.5维有限元法分析横观各向同性地基上列车运行引起的地面振动. 岩石力学与工程学报, 32(1):78-87. 刘磊, 蒋一然. 2019. 大量高铁地震事件的属性体提取与特性分析. 地球物理学报, 62(6):2313-2320, doi:10.6038/cjg2019M0682. 王晓凯, 陈文超, 温景充等. 2019a. 高铁震源地震信号的挤压时频分析应用. 地球物理学报, 62(6):2328-2335, doi:10.6038/cjg2019M0658. 王晓凯, 陈建友, 陈文超等. 2019b. 高铁震源地震信号的稀疏化建模. 地球物理学报, 62(6):2336-2343, doi:10.6038/cjg2019M0662. 张固澜, 何承杰, 李勇等. 2019. 高铁地震震源子波时间函数及验证. 地球物理学报, 62(6):2344-2354, doi:10.6038/cjg2019M0661. 张唤兰, 王保利, 宁杰远等. 2019. 高铁地震数据干涉成像技术初探. 地球物理学报, 62(6):2321-2327, doi:10.6038/cjg2019M0676. 周凤玺,曹永春,赵王刚. 2015. 移动荷载作用下非均匀地基的动力响应分析. 岩土力学,36(7):2027-2033.