YANG QinRun,
TAN MaoJin,
LI GuiShan et al
.2020.Numerical simulation and joint inversion of three-dimensional borehole-to-surface resistivity of high deviated or horizontal wells Chinese Journal of Geophysics(in Chinese),63(12): 4540-4552,doi: 10.6038/cjg2020O0137
Numerical simulation and joint inversion of three-dimensional borehole-to-surface resistivity of high deviated or horizontal wells
YANG QinRun1, TAN MaoJin1, LI GuiShan2, ZHANG FuLai3, BAI Ze1
1. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China; 2. Production Logging Center, China Petroleum Logging CO. LTD., Xi'an 710200, China; 3. Beijing Horizontal Hualong Technology Ltd., Beijing 100049, China
Abstract:Borehole-to-surface electrical imaging supplies the high-power direct current into the borehole through the well case, and the electric potential is measured formed by the electrical characteristics change of underground fluids on the surface to inverse the resistivity distribution of underground medium. It is of great significance for the monitoring of water injection and fracturing effect in oil fields to carry out numerical simulation and inversion research on three-dimensional resistivity of the high deviated or horizontal wells. Based on the principle of borehole-to-surface electrical imaging method, the finite-difference method and the incomplete Cholesky conjugate gradient (ICCG) method were used to simulate the surface response of the high deviated or horizontal wells. A multi-layer joint inversion method of the high deviated or horizontal well was presented by using the layered damped least square method from shallow to deep, and three-dimensional inversion was carried out for the actual potential data of each layer of horizontal well. The forward modeling results show that inclined and horizontal line sources have obvious influence on the surface potential response. The line source form should be considered in the inversion. The inversion imaging of the actual horizontal well data shows that, after considering the influence of inclined or horizontal line sources, a more accurate three-dimensional inversion imaging of horizontal wells can be obtained by the joint inversion of multi-layer observations. In this way, the true resistivity distribution of horizontal wells can be obtained to judge the direction of the water injection.
Bai Z, Tan M J, Zhang F L. 2016. Three-dimensional forward modeling and inversion of borehole-to-surface electrical imaging with different power sources. Applied Geophysics, 13(3):437-448. Beasley C W, Ward S H. 1986. Three-dimensional mise-à-la-masse modeling applied to mapping fracture zones. Geophysics, 51(1):98-113. Bevc D, Morrison H F. 1991. Borehole-to-surface electrical resistivity monitoring of salt water injection experiment. Geophysics, 56(6):769-777. Chen D P. 2009.3D FEM forward modeling research of borehole-to-surface DC method drived by the arbitrary linear current source[Master's thesis] (in Chinese). Changsha:Central South University. De Carlo L, Perri M T, Caputo M C, et al. 2013. Characterization of a dismissed landfill via electrical resistivity tomography and mise-à-la-masse method. Journal of Applied Geophysics, 98:1-10. Dey A, Morrison H F. 1979. Resistivity modelling for arbitrarily shaped two-dimensional structures. Geophysical Prospecting, 27(1):106-136. Hermans T, Kemna A, Nguyen F. 2015. Covariance-constrained difference inversion of time-lapse electrical resistivity tomography data. Geophysics, 81(5):E311-E322. Ho T L. 2009.3-D inversion of borehole-to-surface electrical data using a back-propagation neural network. Journal of Applied Geophysics, 68(4):489-499. Jia Z Y, Jin F M. 2008. The application of surface-borehole electrical method in reservoir evaluation. Chinese Journal of Engineering Geophysics (in Chinese), 5(3):326-331. Li Y G, Spitzer K. 2002. Tree-dimensional DC resistivity forward modelling using finite elements in comparison with finite-difference solutions. Geophysical Journal International, 151(3):924-934. Li Y G, Spitzer K. 2005. Finite element resistivity modelling for three-dimensional structures with arbitrary anisotropy. Physics of the Earth and Planetary Interiors, 150(1-3):15-27. Liu D Y, Xu K J, Zhao G M, et al. 2006. The study of three-dimensional geo-electric field of arbitrary shape line sources. Progress in Geophysics (in Chinese), 21(2):395-399. Liu H F, Chen D P, Dai Q W, et al. 2011.3D FEM modeling of borehole-surface potential with line current source in semi-underground space of continuous variation of conductivity. Journal of Guilin University of Technology (in Chinese), 31(1):29-38. Loke M H, Barker R D. 1995. Least-squares deconvolution of apparent resistivity pseudosections. Geophysics, 60(6):1682-1690. Mizunaga H, Ushijima K. 1991. Three-Dimensional numerical modeling for the mise-à-la-masse method. Geophysics, 44(4):215-226. Nimmer R E, Osiensky J L. 2002. Using mise-à-la-masse to delineate the migration of a conductive tracer in partially saturated basalt. Environmental Geosciences, 9(2):81-87. Pardo D, Torres-Verdín C, Zhang Z Y. 2008. Sensitivity study of borehole-to-surface and crosswell electromagnetic measurements acquired with energized steel casing to water displacement in hydrocarbon-bearing layers. Geophysics, 73(6):F261-F268. Perri M T, Cassiani G, Gervasio I, et al. 2012. A saline tracer test monitored via both surface and cross-borehole electrical resistivity tomography:comparison of time-lapse results. Journal of Applied Geophysics, 79:6-16. Pridmore D F, Hohmann G W, Ward S H, et al. 1981. An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions. Geophysics, 46(7):1009-1024. Qu Y H. 2008. The 3-D numerical simulation and inversion for borehole-to-ground resistivity survey & dual frequency induced polarization[Ph. D. Thesis] (in Chinese). Beijing:China University of Geosciences (Beijing). Scriba H. 1981. Computation of the electric potential in three-dimensional structures. Geophysical Prospecting, 29(5):790-802. Spitzer K. 1995. A 3-D finite-difference algorithm for DC resistivity modelling using conjugate gradient methods. Geophysical Journal International, 123(3):903-914. Tan H Q, Shen J S, Zhou C, et al. 2004. Borehole-to-surface electrical imaging technique and its application to residual oil distribution analysis of the eighth section in Gudong Oilfield. Journal of the University of Petroleum, China (in Chinese), 28(2):32-37. Tsourlos P, Ogilvy R, Papazachos C, et al. 2011. Measurement and inversion schemes for single borehole-to-surface electrical resistivity tomography surveys. Journal of Geophysics and Engineering, 8(4):487-497. Tsourlos P, Papadopoulos N, Papazachos C, et al. 2014. Efficient 2D inversion of long ERT section. Journal of Applied Geophysics, 105:213-224. Wang C W, Li S C, Liu B, et al. 2016.3D constrained electrical resistivity inversion method based on reference model. Chinese Journal of Geotechnical Engineering (in Chinese), 38(9):1685-1694. Wang L, Fan Y R. 2019. Fast inversion of logging-while-drilling azimuthal resistivity measurements for geosteering and formation evaluation. Journal of Petroleum Science and Engineering, 176:342-351. Wang T, Stodt J A, Stierman D J, et al. 1991. Mapping hydraulic fractures using a borehole-to-surface electrical resistivity method. Geoexploration, 28(3-4):349-369. Wang Z G, He Z X, Wei W B. 2006. Study on some problems upon 3D modeling of DC borehole-ground method. Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 28(4):322-327. Wu X P, Xu G M, Li S C. 1998. The calculation of Three-dimensional geoelectric field of point source by incomplete Cholesky conjugate gradient method. Acta Geophysica Sinica (in Chinese), 41(6):848-855. Wu X P. 2003. A 3-D finite-element algorithm for DC resistivity modelling using the shifted incomplete Cholesky conjugate gradient method. Geophysical Journal International, 154(3):947-956. Xu K J, Li T L. 2006. The forward modeling of three-dimensional geoelectric field of vertical finite line source by finite-difference method. Journal of Jilin University (Earth Science Edition) (in Chinese), 36(1):137-141, 147. Zhang J, Revil A. 2015. Cross-well 4-D resistivity tomography localizes the oil-water encroachment front during water flooding. Geophysical Journal International, 201(1):343-354. Zhang Y. 2009. The forward modeling of three dimensional borehole-to-surface logging technology[Master Thesis].Qingdao:Ocean University of China. Zhang Y Y, Liu D J, Ai Q H, et al. 2014.3D modeling and inversion of the electrical resistivity tomography using steel cased boreholes as long electrodes. Journal of Applied Geophysics, 109:292-300. Zhang Y Y, Liu D J, Zhu G X, et al. 2015.3D forward modeling of borehole-to-surface electric potential measurement system. Progress in Geophysics (in Chinese), 30(4):1849-1855, doi:10.6038/pg20150445. 附中文参考文献 陈德鹏. 2009. 任意线源井地电法三维有限元正演研究[硕士论文]. 长沙:中南大学. 贾正元, 晋凤明. 2008. 井-地电法勘探在油藏评价中的应用. 工程地球物理学报, 5(3):326-331. 刘地渊, 徐凯军, 赵广茂等. 2006. 任意形状线电流源三维地电场研究. 地球物理学进展, 21(2):395-399. 刘海飞, 陈德鹏, 戴前伟等. 2011. 连续电性介质线源井-地电位三维有限元数值模拟. 桂林理工大学学报, 31(1):29-38. 屈有恒. 2008. 井地电阻率法及双频激电三维数值模拟与反演研究[博士论文]. 北京:中国地质大学(北京). 谭河清, 沈金松, 周超等. 2004. 井-地电位成像技术及其在孤东八区剩余油分布研究中的应用. 石油大学学报(自然科学版), 28(2):32-37. 王传武, 李术才, 刘斌等. 2016. 基于参考模型的三维电阻率约束反演方法研究. 岩土工程学报, 38(9):1685-1694. 王志刚, 何展翔, 魏文博. 2006. 井地直流电法三维数值模拟中若干问题研究. 物探化探计算技术, 28(4):322-327. 吴小平,徐果明,李时灿.1998.利用不完全Cholesky共轭梯度法求解点源三维地电场.地球物理学报,41(6):845-855. 徐凯军, 李桐林. 2006. 垂直有限线源三维地电场有限差分正演研究. 吉林大学学报:地球科学版, 36(1):137-141,147. 章钰.2009.三维井-地电位测井技术的正演模拟研究[硕士论文].青岛:中国海洋大学. 张颖颖, 刘得军, 朱庚雪等. 2015. 井地电位测量系统的三维正演. 地球物理学进展, 30(4):1849-1855, doi:10.6038/pg20150445.