WANG Ning,
YIN ChangChun,
GAO LingQi et al
.2020.Airborne EM denoising based on curvelet transform Chinese Journal of Geophysics(in Chinese),63(12): 4592-4603,doi: 10.6038/cjg2020N0365
WANG Ning1, YIN ChangChun1, GAO LingQi1, SU Yang1, LIU YunHe1, XIONG Bin2
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China; 2. College of Earth Sciences, Guilin University of Technology, Guilin 541006, China
Abstract:The airborne electromagnetic (AEM) method has become an effective tool for exploration in areas with complex topography and is widely applied in the world. However, most current AEM systems are mounted or towed in a dynamic environment, resulting in big noise interference. To improve the quality of AEM data and interpretation, the denoising technique needs to be developed. Traditional denoising methods work mostly on special noise or single survey lines, without taking into account the correlation of signal at neighboring survey lines. In this work, we develop a denoising technique based on the curvelet transform for AEM data. As curvelet transform has the characteristics of multiple-scale and multiple-direction, it can remove the noise based on detailed analysis to the signal, while at the same time it considers the signal correlation between neighboring survey lines. Further, we improve the quality of denoising results by introducing the Sigmoid threshold function. We test our method by denoising both synthetic and survey data. The numerical results show that the curvelet-based method has obvious advantage in denoising AEM data.
Abma R, Kabir N. 2006.3D interpolation of irregular data with a POCS algorithm. Geophysics, 71(5):E91-E97. Candès E, Donoho D L. 1999. Curvelets:A Surprisingly Effective Nonadaptive Representation for Objects with Edges. Nashville:Vanderbilt University Press, 1-10. Candès E, Donoho D L. 2004. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Communications on Pure and Applied Mathematics, 57(2):219-266. Candès E, Demanet L, Donoho D, et al. 2006. Fast discrete curvelet transforms. Multiscale Modeling & Simulation, 5(3):861-899. Cao J J, Yang Z Q, Yang Y, et al. 2018. An adaptive seismic random noise elimination method based on curvelet transform. Geophysical Prospecting for Petroleum (in Chinese), 57(1):72-78, 121. Donoho D L, Johnstone J M. 1994. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3):425-455. Donoho D L. 1995. De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41(3):613-627. Du X Z, Lu C D. 2016-11-09. Singular value decomposition and wavelet analysis-based time-domain aeronautical electromagnetic data denoising method,CN,106094046A. Herrmann F J, Hennenfent G. 2008. Non-parametric seismic data recovery with curvelet frames. Geophysical Journal International, 173(1):233-248. Li J W, Liu X B, Zhou J H, et al. 2019. A curvelet threshold iteration method based on energy ratio for surface-wave suppression. Oil Geophysical Prospecting (in Chinese), 54(5):997-1004. Li L F, Zhang X C, Zhang H, et al. 2015. Feature extraction of non-stochastic surfaces using curvelets. Precision Engineering, 39:212-219. Qi S H, Liu Q Y, Chen J H, et al. 2016. Attenuation of noise in receiver functions using curvelet transform. Chinese Journal of Geophysics (in Chinese), 59(3):884-896, doi:10.6038/cjg20160311. Reninger P A, Martelet G, Deparis J, et al. 2011. Singular value decomposition as a denoising tool for airborne time domain electromagnetic data. Journal of Applied Geophysics, 75(2):264-276. Ridsdill-Smith T A, Dentith M C. 1999. The wavelet transform in aeromagnetic processing. Geophysics, 64(4):1003-1013. Sykes M P, Das U C. 1998. Removal of herringbone effects from AEM data maps using the Radon transform. Exploration Geophysics, 29(1-2):92-95. Tao K, Zhu J J. 2012. A comparative study on validity assessment of wavelet de-noising. Journal of Geodesy and Geodynamics (in Chinese), 32(2):128-133. Wang L P. 2006. Plancherel theorem in L2(Rn). Journal of the Central University for Nationalities (Natural Sciences Edition) (in Chinse), 15(4):334-338. Ying L X, Demanet L, Candès E. 2005.3D discrete curvelet transform.//Proceedings of SPIE 5914, Wavelets XI. San Diego, California, United States:SPIE, 351-361. Zhang H L, Liu T Y, Zhang Y C. 2010. High order correlation based dip angle scanning noise elimination method in curvelet domain and space domain. Oil Geophysical Prospecting (in Chinese), 45(2):208-214. Zhu K G, Wang L Q, Xie B, et al. 2013. Noise removal for airborne electromagnetic data based on principal component analysis. The Chinese Journal of Nonferrous Metals (in Chinese), 23(9):2430-2435. 附中文参考文献 曹静杰, 杨志权, 杨勇等. 2018. 一种基于曲波变换的自适应地震随机噪声消除方法. 石油物探, 57(1):72-78,121. 杜兴忠, 陆从德. 2016-11-09. 基于奇异值分解和小波分析的时间域航空电磁数据去噪方法. 中国, 106094046A. 李继伟, 刘晓兵, 周俊骅等. 2019. 基于能量比的Curvelet阈值迭代面波压制. 石油地球物理勘探, 54(5):997-1004. 齐少华, 刘启元, 陈九辉等. 2016. 接收函数的曲波变换去噪. 地球物理学报, 59(3):884-896, doi:10.6038/cjg20160311. 陶珂, 朱建军. 2012. 小波去噪质量评价方法的对比研究. 大地测量与地球动力学, 32(2):128-133. 王丽萍. 2006. 平方可测空间的Plancherel定理. 中央民族大学学报(自然科学版), 15(4):334-338. 张恒磊, 刘天佑, 张云翠. 2010. 基于高阶相关的Curvelet域和空间域的倾角扫描噪声压制方法. 石油地球物理勘探, 45(2):208-214. 朱凯光, 王凌群, 谢宾等. 2013. 基于主成分分析的航空电磁数据噪声去除方法. 中国有色金属学报, 23(9):2430-2435.