WANG Xun,
FENG DeShan,
WANG XiangYu
.2020.GPR multiple-scale full waveform dual-parameter simultaneous inversion based on modified total variation regularization Chinese Journal of Geophysics(in Chinese),63(12): 4485-4501,doi: 10.6038/cjg2020N0130
GPR multiple-scale full waveform dual-parameter simultaneous inversion based on modified total variation regularization
WANG Xun1,2, FENG DeShan1,2, WANG XiangYu1,2
1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China; 2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals, Ministry of Education, Changsha 410083, China
Abstract:The dual-parameter Full Waveform Inversion (FWI) of Ground Penetrating Radar (GPR) needs a vast amount of calculation and can easily fall into a local minimum. In addition, the crosstalk noise caused by coupling the permittivity and conductivity can affect the accuracy of the inversion for conductivity. To solve these problems, this study introduces the Limited-memory Broyden-Fletcher-Goldfarb-Shanno(L-BFGS)algorithm with multiple-parameter adjustment function into the time-domain full waveform inversion of GPR, which avoids the direct storage and accurate solution of the Hessian matrix, and reduces the storage and calculation. Combined with the selection of parameter adjustment factors, the effects of the crosstalk with the permittivity and the conductivity during synchronous inversion are reduced, and the inversion accuracy of the conductivity parameter is improved without reducing the accuracy of the reconstruction permittivity. By loading the Modified Total Variation regularization (MTV) method in the inversion, the stability of the inversion is enhanced, and the edge contour of the target body becomes clearer. First of all, taking a simple model as an example, we compare the advantages and disadvantages of single-scale inversion and multi-scale serial inversion strategies, and the results show that multiple-scale serial inversion is beneficial to step-by-step search for global optimal solution. Then, the experiment of parameter adjustment factor is carried out to demonstrate that the appropriate adjustment factor can effectively improve the inversion accuracy of dielectric conductivity, and the test of the inversion effect with different regularization shows that the improved total variation regularization can effectively improve the stability of inversion and significantly reduce the reconstruction error of the model. Finally, the full waveform inversion of the synthetic noisy data and field data shows that the multiple-scale dual-parameter inversion proposed in this paper has strong robustness, can provide more information constraints, and works effectively in reconstructing the permittivity and conductivity distribution.
Belina F A, Irving J, Ernst J R, et al. 2012. Waveform inversion of crosshole georadar data:influence of source wavelet variability and the suitability of a single wavelet assumption. IEEE Transactions on Geoscience and Remote Sensing, 50(11):4610-4625. Boonyasiriwat C, Valasek P, Routh P, et al. 2009. An efficient multiscale method for time-domain waveform tomography. Geophysics, 74(6):WCC59-WCC68. Bunks C, Saleck F M, Zaleski S, et al. 1995. Multiscale seismic waveform inversion. Geophysics, 60(5):1457-1473. Busch S, Van der Kruk J, Bikowski J, et al. 2012. Quantitative conductivity and permittivity estimation using full-waveform inversion of on-ground GPR data. Geophysics, 77(6):H79-H91. Chen X B, Zhao G Z, Tang J, et al. 2005. An adaptive regularized inversion algorithm for magnetotelluric data. Chinese Journal of Geophysics (in Chinese) 48(4):937-946, doi:10.3321/j.issn:0001-5733.2005.04.029. Cordua K S, Hansen T M, Mosegaard K. 2012. Monte Carlo full-waveform inversion of crosshole GPR data using multiple-point geostatistical a priori information. Geophysics, 77(2):H19-H31. Dagnino D, Sallarès V, Ranero C R. 2014. Scale-and parameter-adaptive model-based gradient pre-conditioner for elastic full-waveform inversion. Geophysical Journal International, 198(2):1130-1142. Daniels D J. 2004. Ground Penetrating Radar. 2nd ed. UK:IEE. El Bouajaji M, Lanteri S, Yedlin M. 2011. Discontinuous Galerkin frequency domain forward modelling for the inversion of electric permittivity in the 2D case. Geophysical Prospecting, 59(5):920-933. Ellefsen K J, Mazzella A T, Horton R J, et al. 2011. Phase and amplitude inversion of crosswell radar data. Geophysics, 76(3):J1-J12. Ernst J R, Maurer H, Green A G, et al. 2007. Full-waveform inversion of crosshole radar data based on 2-D finite-difference time-domain solutions of Maxwell's equations. IEEE Transactions on Geoscience and Remote Sensing, 45(9):2807-2828. Feng D S, Cao C, Wang X. 2019a. Multiscale full-waveform dual-parameter inversion based on total variation regularization to on-ground GPR data. IEEE Transactions on Geoscience and Remote Sensing, 57(11):9450-9465. Feng D S, Wang X. 2018. Fast Ground Penetrating Radar double-parameter inversion based on GPU-parallel by time-domain full waveform optimization conjugate gradient method. Chinese Journal of Geophysics (in Chinese), 61(11):4647-4659, doi:10.6038/cjg2018L0531. Feng D S, Wang X, Zhang B. 2019b. Improving reconstruction of tunnel lining defects from ground-penetrating radar profiles by multi-scale inversion and bi-parametric full-waveform inversion. Advanced Engineering Informatics, 41:100931. Gloaguen E, Giroux B, Marcotte D, et al. 2007. Pseudo-full-waveform inversion of borehole GPR data using stochastic tomography. Geophysics, 72(5):J43-J51. Goldstein T, Osher S. 2009. The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences, 2(2):323-343. Hu Z W. 2018. Research on GPR concrete nondestructive testing technology based on full waveform inversion[Master's thesis] (in Chinese). Beijing:China University of Geosciences. Jazayeri S, Klotzsche A, Kruse S. 2018. Improving estimates of buried pipe diameter and infilling material from ground-penetrating radar profiles with full-waveform inversion. Geophysics, 83(4):H27-H41. Kalogeropoulos A, Van Der Kruk J, Hugenschmidt J, et al. 2013. Full-waveform GPR inversion to assess chloride gradients in concrete. NDT & E International, 57:74-84. Klotzsche A, van der Kruk J, Meles G A, et al. 2010. Full-waveform inversion of cross-hole ground-penetrating radar data to characterize a gravel aquifer close to the Thur River, Switzerland. Near Surface Geophysics, 8(6):635-649. Lailly P. 1983. The seismic inverse problem as a sequence of before-stack migrations.//Conference on Inverse Scattering:Theory and Applications. Philadelphia, PA:SIAM, 206-220. Lavoué F, Brossier R, Métivier L, et al. 2014. Two-dimensional permittivity and conductivity imaging by full waveform inversion of multi offset GPR data:A frequency-domain quasi-Newton approach. Geophysical Journal International, 197(1):248-268. Li Y. 2017. The crosshole GPR ahead prospecting method and its application for adverse geology in tunnel construction[Ph.D. thesis] (in Chinese). Ji'nan:Shandong University. Lin Y Z, Huang L J. 2015. Acoustic-and elastic-waveform inversion using a modified total-variation regularization scheme. Geophysical Journal International, 200(1):489-502. Liu X T. 2019. Research on multi-scale waveform inversion method of ground penetrating radar[Ph.D. thesis] (in Chinese). Changchun:Jilin University. Mao L F. 2007. The forward simulation and inversion imaging of the ultra wide band electromagnetic method[Ph.D. thesis] (in Chinese). Chengdu:Chengdu University of Technology. Meles G, Greenhalgh S, Van der Kruk J, et al. 2012. Taming the non-linearity problem in GPR full-waveform inversion for high contrast media. Journal of Applied Geophysics, 78:31-43. Meles G A, Van der Kruk J, Greenhalgh S A, et al. 2010. A new vector waveform inversion algorithm for simultaneous updating of conductivity and permittivity parameters from combination crosshole/borehole-to-surface GPR data. IEEE Transactions on Geoscience and Remote Sensing, 48(9):3391-3407. Meng X. 2016. Time domain and frequency domain waveform inversion of crosshole radar data and comparative research[Ph.D. thesis] (in Chinese). Changchun:Jilin University. Nilot E, Feng X, Zhang Y, et al. 2018. Multiparameter Full-waveform inversion of on-ground GPR using Memoryless quasi-Newton (MLQN) method.//2018 17th International Conference on Ground Penetrating Radar (GPR). Rapperswil, Switzerland:IEEE, 1-4. Nocedal J, Wright S J. 2006. Numerical Optimization. 2nd ed. New York:Springer. Pratt R G, Shin C, Hicks G J. 1998. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion. Geophysical Journal International, 133(2):341-362. Ren Q C. 2018. Inverts permittivity and conductivity with structural constraint in GPR FWI based on truncated Newton method. Journal of Applied Geophysics, 151:186-193. Roden J A, Gedney S D. 2000. Convolution PML (CPML):An efficient FDTD implementation of the CFS-PML for arbitrary media. Microwave and Optical Technology Letters, 27(5):334-339. Taflove A, Brodwin M E. 1975. Numerical solution of steady-state electromagnetic scattering Problems using the time-dependent Maxwell's equations. IEEE Transactions on Microwave Theory and Techniques, 23(8):623-630. Tarantola A. 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8):1259-1266. Wang M L, Liang Z H, Wang H H, et al. 2019. Review of reverse time migration in ground penetrating radar. Progress in Geophysics (in Chinese), 34(5):2087-2096, doi:10.6038/pg2019CC0169. Watson F M. 2016. Better imaging for landmine detection:An exploration of 3D full-wave inversion for ground-penetrating radar[Ph.D. thesis]. Manchester, UK:Manchester University. Wu J J, Liu S X, Li Y P, et al. 2014. Study of cross-hole radar tomography using full-waveform inversion. Chinese Journal of Geophysics (in Chinese), 57(5):1623-1635, doi:10.6038/cjg20140525. Xu K, McMechan G A. 2014.2D frequency-domain elastic full-waveform inversion using time-domain modeling and a multistep-length gradient approach. Geophysics, 79(2):R41-R53. Yang X, Klotzsche A, Meles G, et al. 2013. Improvements in crosshole GPR full-waveform inversion and application on data measured at the Boise Hydrogeophysics Research Site. Journal of Applied Geophysics, 99:114-124. Yu H L. 2019. A time domain full waveform inversion of GPR based on Modified PRP conjugate gradient method[Master's thesis] (in Chinese). Changchun:Jilin University. Zhang F K, Liu B, Liu L B, et al. 2019. Application of ground penetrating radar to detect tunnel lining defects based on improved full waveform inversion and reverse time migration. Near Surface Geophysics, 17(2):127-139. Zhou H, Sato M, Takenaka T, et al. 2007. Reconstruction from antenna-transformed radar data using a time-domain reconstruction method. IEEE Transactions on Geoscience and Remote Sensing, 45(3):689-696. Zhou H, Chen H M, Li Q Q, et al. 2014. Waveform inversion of ground-penetrating radar data without needing to extract exciting pulse. Chinese Journal of Geophysics (in Chinese), 57(6):1968-1976, doi:10.6038/cjg20140627. 附中文参考文献 陈小斌, 赵国泽, 汤吉等. 2005. 大地电磁自适应正则化反演算法. 地球物理学报, 48(4):937-946, doi:10.3321/j.issn:0001-5733.2005.04.029. 冯德山, 王珣. 2018. 基于GPU并行的时间域全波形优化共轭梯度法快速GPR双参数反演. 地球物理学报, 61(11):4647-4659, doi:10.6038/cjg2018L0531. 胡周文. 2018. 基于全波形反演的GPR混凝土无损检测技术研究[硕士论文]. 北京:中国地质大学(北京). 李尧. 2017. 隧道施工不良地质跨孔雷达超前探测方法与工程应用[博士论文]. 济南:山东大学. 刘新彤. 2019. 探地雷达多尺度波形反演方法研究[博士论文]. 长春:吉林大学. 毛立峰. 2007. 超宽带电磁法正演模拟及反演成像[博士论文]. 成都:成都理工大学. 孟旭. 2016. 时间域和频率域跨孔雷达波形反演及比较研究[博士论文]. 长春:吉林大学. 王敏玲, 梁值欢, 王洪华等. 2019. 探地雷达逆时偏移成像方法研究现状及进展. 地球物理学进展, 34(5):2087-2096, doi:10.6038/pg2019CC0169. 吴俊军, 刘四新, 李彦鹏等. 2014. 跨孔雷达全波形反演成像方法的研究. 地球物理学报, 57(5):1623-1635, doi:10.6038/cjg20140525. 俞海龙. 2019. 基于修正PRP共轭梯度法的探地雷达时间域全波形反演[硕士论文]. 长春:吉林大学. 周辉, 陈汉明, 李卿卿等. 2014. 不需提取激发脉冲的探地雷达波形反演方法. 地球物理学报, 57(6):1968-1976, doi:10.6038/cjg20140627.