SHI KeXu,
ZHANG RuiQing,
XIAO Yong
.2020.Constraints on the crustal thickness in the northeastern Tibetan Plateau and adjacent regions from virtual deep seismic sounding Chinese Journal of Geophysics(in Chinese),63(12): 4369-4381,doi: 10.6038/cjg2020N0128
Constraints on the crustal thickness in the northeastern Tibetan Plateau and adjacent regions from virtual deep seismic sounding
SHI KeXu1,2, ZHANG RuiQing1, XIAO Yong1
1. Institute of Geophysics, China Earthquake Administration, Beijing 100081, China; 2. Second Monitoring and Application Center, China Earthquake Administration, Xi'an 710054, China
Abstract:The northeastern margin of the Tibetan plateau, as the leading edge of the plateau extension, represents the latest deformation of the plateau, which is the key to understand the mechanism of crustal thickening and deformation of the Tibetan plateau. This work estimated the crustal thickness of the northeastern Tibetan plateau and adjacent by the Virtual Deep Seismic Sounding (VDSS) method using the data of the "ChinArray" project, aiming to provide geophysical constraint on the northeastern leading edge of the Tibetan plateau and the dynamic model of the extension. Our results show that the crustal thickness changes dramatically in different tectonic units. Systematic variations of crustal thickness in east-west direction exist within the Qilian and West Qinling orogenic belts. Bounded by about 103°E, the crust is about 45~50 km in the east and more than 55 km in the west. The crust is also thicker (nearly to 55 km) under the transitional region between the Alxa block and the Qilian orogenic belt, while about 45~50 km beneath the central Alxa block. In comparison, the Ordos block has a thinner crust, of which the thickness tends to increase from northern and southern parts (about 45 km) to the central region (about 50 km). In addition, complex SsPmp phases are observed under the Liupanshan station, suggesting a double Moho. Combined with other geophysical evidence, we speculate that the outward expansion of the northeastern Tibetan plateau has evolved by distributed crustal thickening and removal of the lower crust, and the frontier of northeastern growth has already reached to the southern margin of the Alxa block.
An Z S, Kutzbach J E, Prell W L, et al. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411(6833):62-66. Dong X P, Teng J W. 2018. Traveltime tomography using teleseismic P wave in the northeastern Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 61(5):2066-2074, doi:10.6038/cjg2018K0214. Dziewonski A M, Chou T A, Woodhouse J H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86(B4):2825-2852. Ekstr m G, Dziewonski A M. 1985. Centroid-moment tensor solutions for 35 earthquakes in western North America (1977-1983). Bulletin of the Seismological Society of America, 75(1):23-39. England P, Housman G. 1986. Finite strain calculations of continental deformation:2. Comparison with the India-Asia collision zone. Journal of Geophysical Research, 91(B3):3664-3676. Guo W B, Jia S X, Duan Y H, et al. 2016. A study on the basement tectonic units in the northeast margin of Tibetan plateau-the result of Maduo-Gonghe-Yabrai reflaction profile. Chinese Journal of Geophysics (in Chinese), 59(10):3627-3636, doi:10.6038/cjg20161010. Harrison T M, Copeland P, Kidd W S F, et al. 1992. Raising Tibet. Science, 255(5052):1663-1670, doi:10.1126/science.255.5052.1663. Jia S X, Zhang X K, Zhao J R, et al. 2010. Deep seismic sounding data reveal the crustal structures beneath Zoigê basin and its surrounding folded orogenic belts. Science China Earth Sciences, 53(2):203-212, doi:10.1007/s11430-009-0166-0. Kang D, Yu C Q, Chen J H, et al. 2017. Study on the crustal structure in Sichuan-Yunnan region based on virtual deep seismic sounding method. Acta Scientiarum Naturalium Universitatis Pekinensis, 53(5):825-832, doi:10.13209/j.0479-8023.2017.042. Kutzbach J E, Prell W L, Ruddiman W F. 1993. Sensitivity of Eurasian Climate to surface uplift of the Tibetan Plateau. The Journal of Geology, 101(2):177-190, doi:10.1086/648215. Lei Q Y, Zhang P Z, Zheng W J, et al. 2016. Dextral strike-slip of Sanguankou-Niushoushan fault zone and extension of arc tectonic belt in the northeastern margin of the Tibet Plateau. Science China Earth Sciences, 59(5):1025-1040, doi:10.1007/s11430-016-5272-1. Li Q H, Guo J K, Zhou M D, et al. 1991. The velocity structure of Chengxian-Xiji profile. Northwestern Seismological Journal (in Chinese), 13(Supplement):37-43. Li S L, Zhang X K, Zhang C K, et al. 2002. A preliminary study on the crustal velocity structure of Maqin-Lanzhou-Jingbian by means of deep seismic sounding profile. Chinese Journal of Geophysics (in Chinese), 45(2):210-217, doi:10.3321/j.issn:0001-5733.2002.02.007. Li W H, Gao R, Wang H Y, et al. 2017. Crustal structure beneath the Liupanshan fault zone and adjacent regions. Chinese Journal of Geophysics (in Chinese), 60(6):2265-2278, doi:10.6038/cjg20170619. Li Y H, Wang X C, Zhang R Q, et al. 2017. Crustal structure across the NE Tibetan Plateau and Ordos Block from the joint inversion of receiver functions and Rayleigh-wave dispersions. Tectonophysics, 705:33-41, doi:10.1016/j.tecto.2017.03.020. Li Y H, Wu Q J, An Z H, et al. 2006. The Poisson ratio and crustal structure across the NE Tibetan Plateau determined from receiver functions. Chinese Journal of Geophysics (in Chinese), 49(5):1359-1368, doi:10.3321/j.issn:0001-5733.2006.05.015. Liu M J, Mooney W D, Li S L, et al. 2006. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. Tectonophysics, 420(1-2):253-266, doi:10.1016/j.tecto.2006.01.025. Liu Q M, Zhao J M, Lu F, et al. 2014. Crustal structure of northeastern margin of the Tibetan Plateau by receiver function inversion. Science China Earth Sciences, 57(4):741-750, doi:10.1007/s11430-013-4772-5. Liu Z. 2015. The Method of Virtual Deep Seismic Sounding and its implications in the study of crustal thickness beneath the Qinling orogenic belt and adjacent regions[Ph. D. thesis] (in Chinese). Beijing:University of Chinese Academy of Science. Liu Z, Tian X B, Zhu G H, et al. 2015. Probing the Moho interface using SsPmp waves. Chinese Journal of Geophysics (in Chinese), 58(10):3571-3582, doi:10.6038/cjg20151012. Manabe S, Broccoli A J. 1990. Mountains and arid climates of middle latitudes. Science, 247(4939):192-195, doi:10.1126/science.247.4939.192. Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics, 31(4):357-396. Molnar P, Tapponnier P. 1978. Active tectonics of Tibet. Journal of Geophysical Research, 83(B11):5361-5375, doi:10.1029/JB083iB11p05361. Mulch A, Chamberlain C P. 2006. The rise and growth of Tibet. Nature, 439(7077):670-671. Pan S Z, Niu F L. 2011. Large contrasts in crustal structure and composition between the Ordos plateau and the NE Tibetan plateau from receiver function analysis. Earth and Planetary Science Letters, 303(3-4):291-298, doi:10.1016/j.epsl.2011.01.007. Rowley D B, Currie B S. 2006. Palaeo-altimetry of the Late Eocene to Miocene Lunpola basin, Central Tibet. Nature, 439(7077):677-681, doi:10.1038/nature04506. Shen X Z, Liu M, Gao Y, et al. 2017. Lithospheric structure across the northeastern margin of the Tibetan Plateau:Implications for the plateau's lateral growth. Earth and Planetary Science Letters, 459:80-92, doi:10.1016/j.epsl.2016.11.027. Shen X Z, Zhou Y Z, Zhang Y S, et al. 2013. Geodynamic significance of the crust structure beneath the northeastern margin of Tibet. Progress in Geophysics (in Chinese), 28(5):2273-2282, doi:10.6038/pg20130509. Tseng T L, Chen W P, Nowack R L. 2009. Northward thinning of Tibetan crust revealed by virtual seismic profiles. Geophysical Research Letters, 36(24):L24304, doi:10.1029/2009GL040457. Wang C Y, Sandvol E, Zhu L, et al. 2014. Lateral variation of crustal structure in the Ordos block and surrounding regions, North China, and its tectonic implications. Earth and Planetary Science Letters, 387:198-211, doi:10.1016/j.epsl.2013.11.033. Wang S J, Liu B J, Tian X F, et al. 2019. Crustal P-wave velocity structure in the northeastern margin of the Qinghai-Tibetan Plateau and insights into crustal deformation. Science China Earth Sciences, 61(2):1221-1237, doi:10.1007/s11430-017-9227-7. Wang W L, Wu J P, Fang L H, et al. 2017. Sedimentary and crustal thicknesses and Poisson's ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays. Earth and Planetary Science Letters, 462:76-85, doi:10.1016/j.epsl.2016.12.040. Wang X C, Ding Z F, Wu Y, et al. 2017. Crustal thicknesses and Poisson's ratios beneath the northern section of the north-south seismic belt and surrounding areas in China. Chinese Journal of Geophysics (in Chinese), 60(6):2080-2090, doi:10.6038/cjg20170605. Wei X Z, Jiang M M, Chen L, et al. 2018. New VDSS method based on dense linear array and its applications. Progress in Geophysics (in Chinese), 33(3):986-992, doi:10.6038/pg2018BB0201. Wei Z G, Chu R S, Chen L, et al. 2016. Analysis of H-k stacking of receiver functions beneath crust with complex structure:taking the Anatolia Plate as an example. Chinese Journal of Geophysics (in Chinese), 59(11):4048-4062, doi:10.6038/cjg20161110. Xu X M, Niu F L, Ding Z F, et al. 2018. Complicated crustal deformation beneath the NE margin of the Tibetan plateau and its adjacent areas revealed by multi-station receiver-function gathering. Earth and Planetary Science Letters, 497:204-216, doi:10.1016/j.epsl.2018.06.010. Xu Z H, Wang S Y, Pei S P. 2003. Lateral variation of Pn velocity beneath northeastern marginal region of Qingzang plateau. Acta Seismologica Sinica (in Chinese), 25(1):24-31. Yu C Q, Chen W P, Ning J Y, et al. 2012. Thick crust beneath the Ordos plateau:implications for instability of the North China Craton. Earth and Planetary Science Letters, 357-358:366-375, doi:10.1016/j.epsl.2012.09.027. Yu C Q, Chen W P, van der Hilst R D. 2016. Constraints on residual topography and crustal properties in the western United States from virtual deep seismic sounding. Journal of Geophysical Research:Solid Earth, 121(8):5917-5930, doi:10.1002/2016JB013046. Zhang N, Zheng W J, Liu X W, et al. 2016. Kinematics characteristics of Heishan fault in the Western Hexi corridor and its implications for regional tectonic transformation. Journal of Earth Sciences and Environment (in Chinese), 38(2):245-257. Zhang P Z, Wang Q, Ma Z J. 2002. GPS velocity field and active crustal deformation in and around the Qinghai-Tibet plateau. Earth Science Frontiers (in Chinese), 9(2):442-450. Zhang P Z, Zheng D W, Yin G M, et al. 2006. Discussion on late Cenozoic growth and rise of northeastern margin of the Tibetan Plateau. Quaternary Sciences (in Chinese), 26(1):5-13. Zhang R Q, Wu Q J, Li Y H, et al. 2011. Differential patterns of SH and P wave velocity structures in the transition zone beneath northwestern Tibet. Science China Earth Sciences, 41(5):1511-1562, doi:10.1007/s11430-011-4228-8. Zhang S Q, Wu L J, Guo J M, et al. 1985. An interpretation of the DSS data Menyuan-Pingliang-Weinan profile in West China. Acta Geophysica Sinica (in Chinese), 28(5):460-472. Zhang Z J, Klemperer S, Bai Z M, et al. 2011. Crustal structure of the Paleozoic Kunlun orogeny from an active-source seismic profile between Moba and Guide in East Tibet, China. Gondwana Research, 19(4):994-1007, doi:10.1016/j.gr.2010.09.008. Zheng W J, Zhang P Z, Ge W P, et al. 2013. Late Quaternary slip rate of the South Heli Shan Fault (Northern Hexi corridor, NW China) and its implications for northeastward growth of the Tibetan Plateau. Tectonics, 32(2):271-293, doi:10.1002/tect.20022. Zheng W J, Yuan D Y, Zhang P Z, et al. 2016. Tectonic geometry and kinematic dissipation of the active faults in the northeastern Tibetan plateau and their implications for understanding northeastward growth of the plateau. Quaternary Sciences (in Chinese), 36(4):775-788, doi:10.11928/j.issn.1001-7410.2016.04.01. Zhou R J, Li Y, Densmore A L, et al. 2006. Active tectonics of the eastern margin of the Tibet plateau. Journal of Mineralogy and Petrology (in Chinese), 26(2):40-51. Zhu L P, Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3):619-627, doi:10.1046/j.1365-246X.2002.01610.x. 附中文参考文献 董兴朋, 滕吉文. 2018. 青藏高原东北缘远震P波走时层析成像研究. 地球物理学报, 61(5):2066-2074, doi:10.6038/cjg2018K0214. 郭文斌, 嘉世旭, 段永红等. 2016. 青藏高原东北缘基底结构研究——玛多-共和-雅布赖剖面上地壳地震折射探测. 地球物理学报, 59(10):3627-3636, doi:10.6038/cjg20161010. 亢豆, 俞春泉, 陈九辉等. 2017. 川滇地区地壳结构的虚拟地表震源反射测深法研究. 北京大学学报, 53(5):825-832, doi:10.13209/j.0479-8023.2017.042. 雷启云, 张培震, 郑文俊等. 2016. 青藏高原东北缘三关口-牛首山断裂的右旋走滑与弧形构造带扩展. 中国科学:地球科学, 46(5):691-705, doi:10.1360/N072015-00254. 李清河, 郭建康, 周民都等. 1991. 成县-西吉剖面地壳速度结构. 西北地震学报, 13(增刊):37-43. 李松林, 张先康, 张成科等. 2002. 玛沁-兰州-靖边地震测深剖面地壳速度结构的初步研究. 地球物理学报. 45(2):210-217, doi:10.3321/j.issn:0001-5733.2002.02.007. 李文辉, 高锐, 王海燕等. 2017. 六盘山断裂带及其邻区地壳结构. 地球物理学报, 60(6):2265-2278, doi:10.6038/cjg20170619. 李永华, 吴庆举, 安张辉等. 2006. 青藏高原东北缘地壳S波速度结构与泊松比及其意义. 地球物理学报, 49(5):1359-1368, doi:10.3321/j.issn:0001-5733.2006.05.015. 刘启民, 赵俊猛, 卢芳等. 2014. 用接收函数方法反演青藏高原东北缘地壳结构. 中国科学:地球科学, 44(4):668-679, doi:10.1007/s11430-013-4772-5. 刘震. 2015. 虚拟地震测深方法研究及其在秦岭造山带和邻区地壳厚度研究中的应用[博士论文]. 北京:中国科学院大学. 刘震, 田小波, 朱高华等. 2015. SsPmp震相地壳探测方法. 地球物理学报, 58(10):3571-3582, doi:10.6038/cjg20151012. 沈旭章, 周元泽, 张元生等. 2013. 青藏高原东北缘地壳结构变化的地球动力学意义. 地球物理学进展, 28(5):2273-2282, doi:10.6038/pg20130509. 王帅军, 刘保金, 田晓峰等. 2019. 青藏高原东北缘地壳P波速度结构及其对地壳变形研究的启示. 中国科学:地球科学, 49(2):368-382. 王兴臣, 丁志峰, 武岩等. 2017. 中国南北地震带北段及其周缘地壳厚度与泊松比研究. 地球物理学报, 60(6):2080-2090, doi:10.6038/cjg20170605. 魏晓拙, 姜明明, 陈凌等. 2018. 一种基于密集线性台阵的虚拟地震测深新方法及其应用. 地球物理学进展, 33(3):986-992, doi:10.6038/pg2018BB0201. 危自根, 储日升, 陈凌等. 2016. 复杂地壳接收函数H-k叠加——以安纳托利亚板块为例. 地球物理学报, 59(11):4048-4062, doi:10.6038/cjg20161110. 许忠淮, 汪素云, 裴顺平. 2003. 青藏高原东北缘地区Pn波速度的横向变化. 地震学报, 25(1):24-31. 张宁, 郑文俊, 刘兴旺等. 2016. 河西走廊西端黑山断裂运动学特征及其在构造转换中的意义. 地球科学与环境学报, 38(2):245-257. 张培震, 王琪, 马宗晋. 2002. 青藏高原现今构造变形特征与GPS速度场. 地学前缘, 9(2):442-450. 张培震, 郑德文, 尹功明等. 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论. 第四纪研究, 26(1):5-13. 张少泉, 武利军, 郭建明等. 1985. 中国西部地区门源-平凉-渭南地震测深剖面资料的分析解释. 地球物理学报, 28(5):460-472. 郑文俊, 袁道阳, 张培震等. 2016. 青藏高原东北缘活动构造几何图像、运动转换与高原扩展. 第四纪研究, 36(4):775-788, doi:10.11928/j.issn.1001-7410.2016.04.01. 周荣军, 李勇, Densmore A L等. 2006. 青藏高原东缘活动构造. 矿物岩石, 26(2):40-51.