LIAO Li,
ZHAO ShuFan,
SHEN XuHui et al
.2019.Characteristic analysis and full wave simulation of electrical field for China seismo-electromagnetic satellite observations radiated from VLF transmitter Chinese Journal of Geophysics(in Chinese),62(4): 1210-1217,doi: 10.6038/cjg2019M0504
Characteristic analysis and full wave simulation of electrical field for China seismo-electromagnetic satellite observations radiated from VLF transmitter
1. Institute of Geophysics, China Earthquake Administration, Beijing 100081, China; 2. Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China; 3. Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China; 4. Wuhan Textile University, Wuhan 430073, China
Abstract:The China seismo-electromagnetic satellite (ZH-1) has been successfully launched on February 2nd, 2018. In-orbit test on the satellite data is undergoing, and meanwhile, the quality of the scientific data needs to be verified. The VLF electric field power spectrum data at night-side of ZH-1 from May to June 2018 has been analyzed. The re-orbit data above the VLF transmitters at different L shell with different radiation frequencies have been analyzed. It can be found that the standard deviation of the electric field excited by the VLF transmitters observed by the ZH-1 satellite is similar with DEMETER satellite. The observed electric fields are generally consistent with the full-wave simulation results, which mean that ZH-1 satellite's electric field PSD data at VLF band is stable and reliable. In addition, the electric field distribution and the propagation mode of the signal from the VLF transmitters have also been studied above the transmitters and their conjugate regions. The results show that the electromagnetic waves penetrating the lower ionosphere propagate in the way of the ‘duct’ or the ‘non-duct’ whistler mode to the topside of VLF transmitter and its conjugate region. Because of the Landau damping, the electromagnetic energy reaching the conjugate region is usually smaller than it just above the transmitter. It is easier for the VLF transmitters located at L<1.5 to propagate as the ‘non-duct’ whistler mode. The electric field distribution has northward displacement at the conjugate region for the ‘duct’ mode.
Abel B, Thorne R M. 1998a. Electron scattering loss in Earth's inner magnetosphere:1. Dominant physical processes. Journal of Geophysical Research:Space Physics, 103(A2):2385-2396. Abel B, Thorne R M. 1998b. Electron scattering loss in Earth's inner magnetosphere:2. Sensitivity to model parameters. Journal of Geophysical Research:Space Physics, 103(A2):2397-2407. Barton C E. 1997. International Geomagnetic Reference Field:The seventh generation. Journal of Geomagnetism and Geoelectricity, 49(2-3):123-148. Bilitza D, Reinisch B W. 2008. International Reference Ionosphere 2007:Improvements and new parameters. Advances in Space Research, 42(4):599-609. Bortnik J, Inan U S, Bell T F. 2006a. Temporal signatures of radiation belt electron precipitation induced by lightning-generated MR whistler waves:1. Methodology. Journal of Geophysical Research:Space Physics, 111(A2):A02204, doi:10.1029/2005JA011182. Bortnik J, Inan U S, Bell T F. 2006b. Temporal signatures of radiation belt electron precipitation induced by lightning-generated MR whistler waves:2. Global signatures. Journal of Geophysical Research:Space Physics, 111(A2):A02205, doi:10.1029/2005JA011398. Clilverd M A, Smith A J, Thomson N R. 1992a. The effects of ionospheric horizontal electron density gradients on whistler mode signals. Journal of Atmospheric and Terrestrial Physics, 54(7-8):1061-1074. Clilverd M A, Thomson N R, Smith A J. 1992b. Observation of two preferred propagation paths for whistler mode VLF signals received at a non-conjugate location. Journal of Atmospheric and Terrestrial Physics, 54(7-8):1075-1079. Clilverd M A, Rodger C J, Gamble R, et al. 2008. Ground-based transmitter signals observed from space:Ducted or nonducted? Journal of Geophysical Research:Space Physics, 113(A4):A04211, doi:10.1029/2007JA012602. Cohen M B, Inan U S. 2012. Terrestrial VLF transmitter injection into the magnetosphere. Journal of Geophysical Research:Space Physics, 117(A8):A08310, doi:10.1029/2012JA017992. Crary J H. 1961. The effect of the earth-ionosphere waveguide on whistlers[Ph. D. thesis]. California:Stanford University. Helliwell R A. 1965. Whistlers and Related Ionospheric Phenomena. Stanford, California:Stanford University Press. Inan U S, Chang H C, Helliwell R A. 1984. Electron precipitation zones around major ground-based VLF signal sources. Journal of Geophysical Research, 89(A5):2891-2906. Kulkarni P, Inan U S, Bell T F, et al. 2008. Precipitation signatures of ground-based VLF transmitters. Journal of Geophysical Research:Space Physics, 113(A7):A07214, doi:10.1029/2007JA012569. Lehtinen N G, Inan U S. 2008. Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere with application to radiation by a modulated electrojet. Journal of Geophysical Research Space Physics, 2008, 113(A6):A06301, doi:10.1029/2007JA012911. Lehtinen N G, Inan U S. 2009. Full-wave modeling of transionospheric propagation of VLF waves. Geophysical Research Letters, 36(3):L03104, doi:10.1029/2008GL036535. Li J D, Spasojevic M, Harid V, et al. 2014. Analysis of magnetospheric ELF/VLF wave amplification from the Siple Transmitter experiment. Journal of Geophysical Research:Space Physics, 119(3):1837-1850. Liao L, Zhao S F, Zhang X M. 2017. Advances in the study of transionospheric propagation of VLF waves. Chinese Journal of Space Science (in Chinese), 37(3):277-283. Shen X H, Zhang X M, Yuan S G, et al. 2018a. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Science China Technological Sciences, 61(5):634-642. Shen X H, Zong Q-G, Zhang X M, 2018b. Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results. Earth Planet. Phys., 2(6), 439-443. doi:10.26464/epp2018041. Starks M J, Quinn R A, Ginet G P, et al. 2008. Illumination of the plasmasphere by terrestrial very low frequency transmitters:Model validation. Journal of Geophysical Research:Space Physics, 113(A9):A09320, doi:10.1029/2008JA013112. Swanson E R, Kugel C P. 1972. VLF timing:Conventional and modern techniques including omega. Proceedings of the IEEE, 60(5):540-551. Tao X, Bortnik J, Friedrich M. 2010. Variance of transionospheric VLF wave power absorption. Journal of Geophysical Research:Space Physics, 115(A7):A07303, doi:10.1029/2009JA015115. Thorne R M. 2010. Radiation belt dynamics:The importance of wave-particle interactions. Geophysical Research Letters, 37(22):L22107, doi:10.1029/2010GL044990. Zhang X M, Zhao S F, Ruzhin Y, et al. 2017. The spatial distribution features of three Alpha transmitter signals at the topside ionosphere. Radio Science, 52(5):653-662, doi:10.1002/2016RS006219. Zhao S F, Zhang X M, Zhao Z Y, et al. 2015. Temporal variations of electromagnetic responses in the ionosphere excited by the NWC communication station. Chinese Journal of Geophysics (in Chinese), 58(7):2263-2273, doi:10.6038/cjg20150705. Zhao S F, Liao L, Zhang X M. 2017. Trans-ionospheric VLF wave power absorption of terrestrial VLF signal. Chinese Journal of Geophysics (in Chinese), 60(8):3004-3014, doi:10.6038/cjg20170809. 廖力, 赵庶凡, 张学民. 2017. VLF波渗透电离层传播计算研究进展. 空间科学学报, 37(3):277-283. 赵庶凡, 张学民, 赵正予等. 2015. NWC通信台在电离层中激发电磁响应的时变特征. 地球物理学报, 58(7):2263-2273, doi:10.6038/cjg20150705. 赵庶凡, 廖力, 张学民. 2017. 地面VLF波穿透电离层的能量衰减变化. 地球物理学报, 60(8):3004-3014, doi:10.6038/cjg20170809.