XU XinYu,
JIANG WeiPing,
ZHANG XiaoMin et al
.2018.Ability of recovering the global gravity field of a new satellite gravimetry system Chinese Journal of Geophysics(in Chinese),61(6): 2227-2236,doi: 10.6038/cjg2018L0270
1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China;
2. Research Center of Global Navigation Satellite System, Wuhan University, Wuhan 430079, China;
3. DFH Satellite Co. LTD, Beijing 100094, China;
4. Satellite Surveying and Mapping Application Center, National Administration of Surveying, Mapping and Geoinformation, Beijing 100048, China;
5. Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China
A new satellite gravimetry mode combining SST-hl, SST-ll and SGG is proposed in this paper. This mode can benefit from advantages of the SST-ll and SGG modes to a certain extent. The ability to recover the gravity field model using the new satellite gravimetry mode is analyzed in detail based on the semi-analytical approach used for the indicator design of the satellite gravimetry system. The different parameter settings of the gravity measurement satellite systems, different observations and corresponding different white noise levels are considered in the test.The results of numerical simulation show that the orbital height is the key factor that affects the ability of recovering the gravity field in the same condition with the same observation accuracy and inter-satellite range. With the increase of inter-satellite range, the accuracy of inversed high-frequency gravity field signal will be improved first and then decreased. And the optimal inter-satellite range is between 150 km and 180 km when the orbital height changes from 200 km to 350 km. The inter-satellite range rate and the satellite gravity gradients are complementary to each other only in certain precision configurations. If the accuracy of one type of observations was very high, another type of observations would contribute not too much or don't contribute to the combined solution.When the inter-satellite range rate observations have high accuracy, almost all frequency bands of the gravitational field model are contributed by the inter-satellite range rate of observations. At the orbit height of 300 km, when the accuracies of the inter-satellite range rate and gravitational gradient observations in the new gravimetric satellite system are 1 μm·s-1/√Hz and 5 mE/√Hz, respectively which correspond to the design indicators of GRACE and GOCE missions, and the accuracy of the recovered gravity field model up to the degree and order 200 is 1.2 times and 2.8 times higher than the ones derived independently. In order to realize the scientific objective of 1~2 cm accuracy geoid with the 100 km spatial resolution, the proposed orbital height is 300 km in terms of the satellite operating life. And the corresponding accuracies of the inter-satellite range rate and the satellite gravity gradient are 0.1 μm·s-1/√Hz and 1 mE/√Hz, respectively. The research results of this paper could be a technique reference for developing the autonomous gravity measurement satellite system of China.
Bender P L, Hall J L, Ye J, et al. 2003. Satellite-satellite laser links for future gravity missions. Space Science Reviews, 108(1-2):377-384.
Bender P L, Wiese D N, Nerem R S. 2008. A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits.//Proceedings of the 3rd International Symposium on Formation Flying, Missions and Technologies. Noordwijk, The Netherlands:ESA.
Bock H, Jäggi A, Beutler G, et al. 2014. GOCE:precise orbit determination for the entire mission. Journal of Geodesy, 88(11):1047-1060.
Cesare S, Sechi G. 2013. Next generation gravity mission.//Distributed Space Missions for Earth System Monitoring. New York:Springer, 575-598.
Einarsson I. 2011. Sensitivity analysis for future gravity satellite missions. Potsdam:Deutsches GeoForschungs Zentrum GFZ.
Elsaka B. 2010. Simulated satellite formation flights for detecting the temporal variations of the earth's gravity field. Germany:University of Bonn.
Elsaka B, Raimondo J C, Brieden P, et al. 2014. Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation. Journal of Geodesy, 88(1):31-43, doi:10.1007/s00190-013-0665-9.
ESA. 1999. Gravity Field and Steady-State Ocean Circulation Mission. Report for mission selection of the four candidate earth explorer missions, ESA Publications Division. SP-1233(1) ESA.
Flury J, Bettadpur S, Tapley B D. 2008. Precise accelerometry onboard the GRACE gravity field satellite mission. Adv. Space Res., 42(8):1414-1423, doi:10.1016/j.asr.2008.05.004.
Gruber T, e. motion Team, NGGM Teams. 2011. Recent Studies on Future Gravity Field Missions in Europe:e. motion vs. NGGM.//GRACE Science Team Meeting, Austin.
Kaula W M. 1966. Theory of Satellite Geodesy. Waltham Massachusetts:Blaisdell Publishing Company.
Loomis B D. 2009. Simulation study of a follow-on gravity mission to GRACE. Colorado:University of Colorado at Boulder.
Panet I, Flury J, Biancale R, et al. 2013. Earth System Mass Transport Mission (e.motion):A concept for future Earth gravity field measurements from space. Surveys in Geophysics, 34(2):141-163.
Reigber C, Lühr H, Schwintzer P. 2002. CHAMP mission status. Advances in Space Research, 30(2):129-134.
Rummel R, Yi W Y, Stummer C. 2011. GOCE gravitational gradiometry. Journal of Geodesy, 85(11):777-790.
Schrama E J O. 1989. The role of orbit errors in processing of satellite altimeter data. Neth. Geod. Comm., Publications on Geodesy, no. 33. Delft.
Sharifi M A, Sneeuw N, Keller W. 2007. Gravity recovery capability of four generic satellite formations.//Kilicoglu A, Forsberg R, eds. Proceedings of the 1st International Symposium of the International Gravity Field Service, General Command of Mapping.
Sheard B S, Heinzel G, Danzmann K, et al. 2012. Intersatellite laser ranging instrument for the GRACE follow-on mission. Journal of Geodesy, 86(12):1083-1095, doi:10.1007/s00190-012-0566-3.
Sneeuw N. 2000. A Semi-analytical Approach to Gravity Field Analysis from Satellite Observations. Munich, Germany:Institut für Astronomische und Physikalische Geodäsie, Technische Universität München.
Sneeuw N, Schaub H. 2005. Satellite clusters for future gravity field missions.//Jekeli C Bastos L Fernandes J, eds. Gravity, Geoid and Space Missions. Vol. 129. Berlin, Heidelberg:Springer, 12-17.
Tapley B D, Bettadpur S, Watkins M M, et al. 2004. The gravity recovery and climate experiment:Mission overview and early results. Geophys. Res. Lett., 31:L09607, doi:10.1029/2004GL019920.
Visser P N A M, Sneeuw N, Reubelt T, et al. 2010. Space-borne gravimetric satellite constellations and ocean tides:aliasing effects. Geophys. J. Int., 181(2):789-805.
Watkins M, Gross M, Tapley B, et al. 2010. GRACE follow-on mission status.//AIAA Space 2010 Conference & Exposition:‘Future Earth Science Missions and Enabling Activities’. Anaheim CA, USA.
Wiese D N, Folkner W M, Nerem R S. 2009. Alternative mission architectures for a gravity recovery satellite mission. Journal of Geodesy, 83(6):569-581.
Xu X Y, Li J C, Jiang W P, et al. 2009. The fast analysis of the GOCE gravity field.//Observing our Changing Earth. International Association of Geodesy Symposia. Berlin Heidelberg:Springer, 133:379-385.
Zhao Q. 2012. Methodology research and simulation analysis of the earth's gravity field determination using satellite formation (in Chinese). Wuhan:Wuhan University.
Zheng W, Xu H Z, Zhong M, et al. 2010. Efficient and rapid estimation of the accuracy of future GRACE Follow-On Earth's gravitational field using the analytic method. Chinese Journal of Geophysics (in Chinese), 53(4):796-806, doi:10.3969/j.issn.0001-5733.2010.04.004.
赵倩. 2012. 利用卫星编队探测地球重力场的方法研究与仿真分析. 武汉:武汉大学.
郑伟, 许厚泽, 钟敏等. 2010. 利用解析法有效快速估计将来GRACE Follow-On地球重力场的精度. 地球物理学报, 53(4):796-806, doi:10.3969/j.issn.0001-5733.2010.04.004.