Anelastic strain recovery method to determine in-situ stress and application example
-
摘要: 岩芯非弹性应变恢复法是近年来发展起来的比较经济有效的深部地应力测量方法,汶川5.12地震后,我国大陆首次将该方法应用于汶川地震断裂带科学钻的地应力测量.本文简述了该方法的原理、计算方法和汶川地震科学钻一号孔的典型结果.给出了一号孔在所测深度之处的三个主应力的大小和方向.三个主应力中,最大主应力和中间主应力近于水平,最小主应力近于直立.最大主应力方向为北西.在746 m深度,三个主应力的大小为25.2 MPa,21.5 MPa,18.5 MPa.这种应力状态可使龙门山断层产生逆冲兼右行走滑运动,与汶川5.12地震的断层运动一致.该方法得到的结果与震源机制解及其他地应力测量方法得到的结果吻合.测量结果表明,非弹性应变恢复法具有较大的实用价值.特别是在较大深度的钻孔和地层较破碎的复杂地质条件下,应力解除法、水压致裂法等难以实施时,此方法仍有可能获得较可靠的地应力数据,适应性更强.Abstract: The principle and calculation procedures for a lower cost and effective core-based stress measurement technique called anelastic strain recovery (ASR) technique are described. And then an example of its application to the hole-1 of Wenchuan Earthquake Fault Scientific Drilling Project (WFSD-1) is shown. Three principal stress magnitudes and directions of the hole-1 at the tested depth were determined. The maximum σ1 and middle principal stress σ2 are nearly horizontal, and the minimum principal stress σ3 is nearly vertical. The azimuth of the maximum principal stress is NW. At the vertical depth of 746 meters, the magnitude is 25.2 MPa for σ1, 21.5 MPa for σ2, and 18.5 MPa for σ3. This stress state can be interpreted as the same stress regime to make Longmen Shan fault to generate thrust and dextral strike-slip movement, which is consistent with fault movement of Wenchuan 5.12 Earthquake. The results obtained by ASR can be compared with that by focal mechanism solutions and other stress measurement methods. The example shows that, ASR method has great practical value. Especially in the larger drilling depth and complex geology conditions, stress relief method and hydraulic fracturing method can hardly be implemented, while ASR can obtain reliable data with good adaptability.
-
[1] Voight B. Determination of the virgin state of stress in the vicinity of a borehole from measurements of a partial inelastic strain tensor in drill cores. Felsmechanik und Ingenieurgeologie, 1968, 6(4): 201-215.
[2] Teufel L W. Determination of in-situ stress from anelastic strain recovery measurements of oriented core. // Rock Mechanics in Productivity and Protection-The 25th Symposium on Rock Mechanics. Denver, USA:, 1983: 421-430.
[3] Matsuki K. Three-dimensional in-situ stress measurement with anelastic strain recovery of a rock core. // Wittke W ed. Proceedings of the 7th International Congress on Rock Mechanics. Aachen:, 1991: 557-560.
[4] Matsuki K, Takeuchi K. Three-dimensional in situ stress determination by anelastic strain recovery of a rock core. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1993, 30(7): 1019-1022.
[5] Lin W, Kwasniewski M, Imamura T, et al. Determination of three-dimensional in situ stresses from anelastic strain recovery measurement of cores at great depth. Tectonophysics, 2006, 426(1-2): 221-238.
[6] Lin W, Yeh E C, Ito H, et al. Preliminary results of stress measurement using drill cores of TCDP Hole-A: an application of anelastic strain recovery method to three-dimensional in-situ stress determination. Terrestrial, Atmospheric and Oceanic Sciences, 2007, 18(2): 379-393.
[7] 尹祥础. 固体力学. 北京: 地震出版社, 1985: 1-512. Yin X C. Solid Mechanics (in Chinese). Beijing: Seismological Press, 1985: 1-512.
[8] 耶格 J C, 库克 N G W著. 中国科学院工程力学研究所译. 岩石力学基础. 北京: 地震出版社, 1981: 1-690. Jaeger J C, Cook N G W. Institute of Engineering Mechanics, Chinese Academy of Sciences Translated. Fundamentals of Rock Mechanics (in Chinese). Beijing: Seismological Press, 1981: 1-690.
[9] Matsuki K. Anelastic strain recovery compliance of rocks and its application to in situ stress measurement. Int. J. Rock. Mech. Mining Sci., 2008, 45(6): 952-965.
[10] 王连捷, 潘立宙,廖椿庭等. 地应力测量及其在工程中的应用. 北京: 地质出版社, 1991: 1-174. Wang L J, Pan L Z, Liao C T, et al. Crustal Stress Measurements and Their Application in Engineering (in Chinese). Beijing: Geological Publishing House, 1991: 1-174.
[11] 徐次达, 华伯浩. 固体力学有限元理论、方法及程序. 北京: 水利水电出版社, 1983: 1-508. Xu C D, Hua B H. Solid Mechanics Finite Element Theory, Methods and Procedures (in Chinese). Beijing: Water Resources and Hydropower Press, 1983: 1-508.
[12] 林为人. 基于岩芯非弹性应变恢复量测定的深孔三维地应力测试方法. 岩石力学与工程学报, 2008, 27(12): 2387-2394. Lin W. A core-based method to determine three-dimensional in-situ stress in deep drilling wells: anelastic strain recovery technique. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2387-2394.
[13] 陈运泰, 许力生, 张勇等. 2008 年5 月12 日汶川特大地震震源特性分析报告. http://www.csi.ac.cn/sichuan/chenyuntai.pdf. Chen Y T, Xu L S, Zhang Y, et al. Report of the great Wenchuan earthquake source of May 12, 2008 (in Chinese). http: //www.csi.ac.cn/sichuan/chenyuntai.pdf.
[14] Wu M L, Zhang Y Q, Liao C T, et al. Preliminary results of in-situ stress measurements along the Longmenshan Fault Zone after the Wenchuan Ms8.0 Earthquake. Acta Geologica Sinica, 2009, 83(4): 746-753.
[15] 安其美, 丁立丰, 王海忠等. 龙门山断裂带的性质与活动性 研究. 大地测量与地球动力学, 2004, 24(2): 115-119. An Q M, Ding L F, Wang H Z, et al. Research of property and activity of Longmen Mountain fault zone. Journal of Geodesy and Geodynamics (in Chinese), 2004, 24(2): 115-119.
[16] 杜义, 谢富仁, 张效亮等. 汶川Ms8. 0级地震断层滑动机制研究. 地球物理学报, 2009, 52(2): 464-473. Du Y, Xie F R, Zhang X L, et al. The mechanics of fault slip of Ms8. 0 Wenchuan earthquake. Chinese J. Geophys. (in Chinese), 2009, 52(2): 464-473.
[17] 陈颙. 地壳岩石的力学性能. 北京: 地震出版社, 1988: 1-400. Chen Y. Mechanical Properties of Crust Rock: Theoretical Foundation and Experimental Methods (in Chinese). Beijing: Seismological Press, 1988: 1-400.
[18] 许忠淮, 汪素云, 黄雨蕊等. 由大量的地震资料推断的我国大陆构造应力场. 地球物理学报, 1989, 32(6): 636-647. Xu Z H, Wang S Y, Huang Y R, et al. The tectonic stress field of Chinese continent deduced from a great number of earthquakes. Chinese J. Geophys. (in Chinese), 1989, 32(6): 636-647.
[19] 李志明, 张金珠. 地应力与油气勘探开发. 北京: 石油工业出版社. 1997. Li Z M, Zhang J Z. In-Situ Stress and Petroleum Exploration & Development (in Chinese). Beijing: Petroleum Industry Press, 1997.
[20] 许忠淮. 板内应力场研究新成果的总结——JGR世界应力图项目专辑简介. 地球物理学进展, 1994, 9(1): 75-83. Xu Z H. An aggregation of new results of intraplate stress researches: A brief account of the JGR special issue on world stress map project. Progress in Geophysics (in Chinese), 1994, 9(1): 75-83.
[21] Zoback M L. First and second order patterns of stress in the lithosphere: The World Stress Map Project. J. Geophys. Res., 1992, 97(B8): 11703-11728.
[22] 谢富仁, 崔效锋, 赵建涛等. 中国大陆及邻区现代构造应力场分区. 地球物理学报, 2004, 47(4): 654-662. Xie F R, Cui X F, Zhao J T, et al. Regional division of the recent tectonic stress field in China and adjacent areas. Chinese J. Geophys. (in Chinese), 2004, 47(4): 654-662.
[23] 崔效锋, 谢富仁, 赵建涛. 中国及邻区震源机制解的分区特征. 地震地质, 2005, 27(2): 298-307. Cui X F, Xie F R, Zhao J T. The regional characteristics of focal mechanism solutions in China and its adjacent areas. Seismology and Geology (in Chinese), 2005, 27(2): 298-307.
[24] Zoback M L, Zoback M D. Faulting patterns in North-central Nevada and strength of the crust. J. Geophys. Res., 1980, 85(B1): 275-284.
计量
- 文章访问数:
- PDF下载数:
- 施引文献: 0