利用多种横波分裂分析方法评估确定各向异性参数

臧虎临, 冯梅, 安美建. 2023. 利用多种横波分裂分析方法评估确定各向异性参数. 地球物理学报, 66(8): 3258-3272, doi: 10.6038/cjg2022Q0363
引用本文: 臧虎临, 冯梅, 安美建. 2023. 利用多种横波分裂分析方法评估确定各向异性参数. 地球物理学报, 66(8): 3258-3272, doi: 10.6038/cjg2022Q0363
ZANG HuLin, FENG Mei, AN MeiJian. 2023. Evaluation and determination of anisotropic parameters using multiple shear-wave splitting analysis methods. Chinese Journal of Geophysics (in Chinese), 66(8): 3258-3272, doi: 10.6038/cjg2022Q0363
Citation: ZANG HuLin, FENG Mei, AN MeiJian. 2023. Evaluation and determination of anisotropic parameters using multiple shear-wave splitting analysis methods. Chinese Journal of Geophysics (in Chinese), 66(8): 3258-3272, doi: 10.6038/cjg2022Q0363

利用多种横波分裂分析方法评估确定各向异性参数

  • 基金项目:

    国家自然科学基金项目(41974051,42174068),中国地质科学院基本科研业务费(JKY202217),中国地质调查项目(DD20230008,DD20190010)资助

详细信息
    作者简介:

    臧虎临, 男, 1998年生, 硕士研究生, 主要从事地震各向异性及地球动力学研究.E-mail: zanghulin@outlook.com

    通讯作者: 冯梅, 女, 1977年生, 研究员, 博士生导师, 主要从事地震活动构造和岩石圈构造物理研究.E-mail: mei_feng_cn@163.com
  • 中图分类号: P315

Evaluation and determination of anisotropic parameters using multiple shear-wave splitting analysis methods

More Information
  • 横波分裂分析是探测地球内部各向异性参数的重要方法.但数据的噪声水平、观测方位分布以及介质复杂程度均会影响横波分裂分析结果的稳定性,从而降低最终解的可靠性,甚至影响介质分层情况的判别.本文首先通过一系列理论测试,分析了旋转相关、最小能量和最小特征值三种横波分裂分析方法所得解随噪声水平、观测方位和介质分层情况的变化规律,发现三种方法分析结果既存在相似性也存在差异性;然后提出了利用这种相似性和差异性对最终解进行评估和确定的方案;最后将该方案应用于理论数据和南美实测数据的分析中.分析结果证明本文提出的方案不仅提高了单层或多层中的顶层介质各向异性参数的可靠性,而且可以有效鉴别介质的分层情况(单层或双层).

  • 加载中
  • 图 1 

    横波分裂现象(下)及分析原理示意图(上)

    Figure 1. 

    Sketch of shear-wave splitting phenomena (bottom) and its analysis principle (top)

    图 2 

    利用RC、SC和EV方法反演横波分裂参数实例

    Figure 2. 

    Example of shear-wave splitting analysis for a synthetic single-layer anisotropic model, by RC, SC and EV methods

    图 3 

    不同噪声水平下单一观测方位反演结果

    Figure 3. 

    Results for data with different noise levels observed from one BAZ.

    图 4 

    不同噪声水平下全观测方位反演结果

    Figure 4. 

    Results for data with different noise levels observed from multiple BAZ

    图 5 

    三种方法解的误差与观测方位的关系

    Figure 5. 

    Variation of solution misfit relative to BAZ for the RC, SC and EV methods

    图 6 

    RC、SC和EV方法对双层各向异性介质模型的反演结果

    Figure 6. 

    Inversion results by RC, SC and EV methods for two-layer anisotropic models

    图 7 

    南美应用实例地震台站(三角)位置

    Figure 7. 

    Location of the stations (triangles) in South America used for the real data example

    图 8 

    两种方法对南美NBLA台站解的评估

    Figure 8. 

    Results of the NBLA station in South America evaluated by two different methods

    图 9 

    具有双层各向异性介质特征的南美台站分析实例

    Figure 9. 

    Examples of two-layer anisotropy for two stations in South America

    表 1 

    不同方法对不同噪声水平数据分析结果的均方根误差

    Table 1. 

    Root-mean-square misfit for data with different noise levels by different methods

    噪声水平 RC SC EV 三种方法综合
    eφ eδt eφ eδt eφ eδt eφ eδt
    20% 10 0.14 4 0.16 6 0.15 6 0.15
    30% 14 0.13 6 0.18 9 0.18 9 0.17
    40% 19 0.12 14 0.15 18 0.13 17 0.13
    下载: 导出CSV

    表 2 

    不同方法对不同噪声水平数据分析结果的均值和标准差

    Table 2. 

    The mean and standard deviation for data with different noise levels by different methods

    噪声水平 RC SC EV 三种方法合计
    φ σφ δt σδt φ σφ δt σδt φ σφ δt σδt φ δt
    20% 47 9 1.98 0.07 45 4 1.95 0.06 45 6 1.97 0.07 45±6.95 1.97±0.07
    30% 50 13 2.00 0.09 48 6 1.95 0.10 50 7 1.96 0.09 49±8.77 1.97±0.10
    40% 57 14 2.05 0.11 52 11 2.00 0.11 57 13 2.03 0.11 55±21.44 2.03±0.11
    下载: 导出CSV
  •  

    Assumpcao M, Guarido M, Van Der Lee S, et al. 2011. Upper-mantle seismic anisotropy from SKS splitting in the South American stable platform: A test of asthenospheric flow models beneath the lithosphere. Lithosphere, 3(2): 173-180, doi: 10.1130/l99.1.

     

    Barbour A J, Beeler N M. 2021. Teleseismic waves reveal anisotropic poroelastic response of wastewater disposal reservoir. Earth Planet. Phys. , 5(6): 547-558, doi: 10.26464/epp2021034.

     

    Becker T W, Lebedev S, Long M D. 2012. On the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography. Journal of Geophysical Research: Solid Earth, 117(B1): B01306, doi: 10.1029/2011JB008705.

     

    Bi Y J, Huang Z C, Wang H B, et al. 2020. Upper-mantle anisotropy and dynamics beneath Northeast Asia: Insight from SKS and local S splitting analysis. Geochemistry, Geophysics, Geosystems, 21(8): e2020GC009160, doi: 10.1029/2020GC009160.

     

    Bréger L, Romanowicz B. 1998. Three-dimensional structure at the base of the mantle beneath the Central Pacific. Science, 282(5389): 718-720, doi: 10.1126/science.282.5389.718.

     

    Cai Y, Wu J P, Fang L H, et al. 2016. Crustal anisotropy and deformation of the southeastern margin of the Tibetan Plateau revealed by Pms splitting. Journal of Asian Earth Sciences, 121: 120-126. doi: 10.1016/j.jseaes.2016.02.005

     

    Chang L J, Ding Z F, Wang C Y. 2015. Upper mantle anisotropy beneath the southern segment of North-South tectonic belt, China. Chinese Journal of Geophysics (in Chinese), 58(11): 4052-4067, doi: 10.6038/cjg20151114.

     

    Chen H C, Niu F L, Obayashi M, et al. 2017. Mantle seismic anisotropy beneath NE China and implications for the lithospheric delamination hypothesis beneath the southern Great Xing'an range. Earth and Planetary Science Letters, 471: 32-41, doi: 10.1016/j.epsl.2017.04.030.

     

    Crampin S. 1979. Seismic anisotropy in the upper mantle. Tectonophysics, 56(1-2): 131, doi: 10.1016/0040-1951(79)90026-X.

     

    Crampin S. 2000. Shear-wave splitting in a critical self-organized crust: the new geophysics. //SEG Technical Program Expanded Abstracts. SEG, 1544-1547.

     

    Deng J, Long M D, Creasy N, et al. 2017. Lowermost mantle anisotropy near the eastern edge of the Pacific LLSVP: constraints from SKS-SKKS splitting intensity measurements. Geophysical Journal International, 210(2): 774-786, doi: 10.1093/gji/ggx190.

     

    Farra V, Vinnik L. 1994. Shear-wave splitting in the mantle of the pacific. Geophysical Journal International, 119(1): 195-218, doi: 10.1111/j.1365-246X.1994.tb00922.x.

     

    Frederiksen A W, Bostock M G. 2000. Modelling teleseismic waves in dipping anisotropic structures. Geophysical Journal International, 141(2): 401-412, doi: 10.1046/j.1365-246X.2000.00090.x.

     

    Gao Y, Wu J, Yi G X, et al. 2010. Crust-mantle coupling in North China: Preliminary analysis from seismic anisotropy. Chinese Science Bulletin, 55(31): 3599-3605, doi: 10.1007/s11434-010-4135-y.

     

    Gao Y, Shi Y T, Wu J, et al. 2012. Shear-wave splitting in the crust: Regional compressive stress from polarizations of fast shear-waves. Earthquake Science, 25(1): 35-45, doi: 10.1007/s11589-012-0829-3.

     

    Garnero E J, Lay T. 1997. Lateral variations in lowermost mantle shear wave anisotropy beneath the north Pacific and Alaska. Journal of Geophysical Research: Solid Earth, 102(B4): 8121-8135, doi: 10.1029/96JB03830.

     

    Heintz M, Vauchez A, Assumpção M, et al. 2003. Shear wave splitting in SE Brazil: an effect of active or fossil upper mantle flow, or both?. Earth and Planetary Science Letters, 211(1-2): 79-95, doi: 10.1016/s0012-821x(03)00163-8.

     

    Hudson J A. 1981. Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal International, 64(1): 133-150, doi: 10.1111/j.1365-246X.1981.tb02662.x.

     

    Irving J C E, Cottaar S, Lekić V. 2018. Seismically determined elastic parameters for Earth's outer core. Science Advances, 4(6): eaar2538, doi: 10.1126/sciadv.aar2538.

     

    Kaneshima S, Silver P G. 1992. A search for source side mantle anisotropy. Geophysical Research Letters, 19(10): 1049-1052, doi: 10.1029/92GL00899.

     

    Li J, Niu F L. 2010. Seismic anisotropy and mantle flow beneath northeast China inferred from regional seismic networks. Journal of Geophysical Research: Solid Earth, 115(B12): B12327, doi: 10.1029/2010JB007470.

     

    Li S L, Guo Z, Chen Y J. 2017. Complicated 3D mantle flow beneath Northeast China from shear wave splitting and its implication for the Cenozoic intraplate volcanism. Tectonophysics, 709: 1-8, doi: 10.1016/j.tecto.2017.04.015.

     

    Liu K H, Gao S S, Gao Y, et al. 2008. Shear wave splitting and mantle flow associated with the deflected Pacific slab beneath northeast Asia. Journal of Geophysical Research: Solid Earth, 113(B1): B01305, doi: 10.1029/2007JB005178.

     

    Liu X Q, Zhou H L, Zheng Z Z, et al. 1998. The characteristics of shear-wave splitting parameters in the presences of two weak azimuth anisotropic layers. Acta Geophysica Sinica (in Chinese), 41(5): 680-690.

     

    Luo Y L, He Y M, Zhao L. 2016. Seismic anisotropy in the D" layer near the core-mantle boundary beneath Southeast Asia. Chinese Journal of Geophysics (in Chinese), 59(10): 3674-3683, doi: 10.6038/cjg20161014.

     

    Menke W, Levin V. 2003. The cross-convolution method for interpreting SKS splitting observations, with application to one and two-layer anisotropic earth models. Geophysical Journal International, 154(2): 379-392, doi: 10.1046/j.1365-246X.2003.01937.x.

     

    Özalaybey S, Savage M K. 1994. Double-layer anisotropy resolved from S phases. Geophysical Journal International, 117(3): 653-664, doi: 10.1111/j.1365-246X.1994.tb02460.x.

     

    Pozgay S H, Wiens D A, Conder J A, et al. 2007. Complex mantle flow in the Mariana subduction system: evidence from shear wave splitting. Geophysical Journal International, 170(1): 371-386, doi: 10.1111/j.1365-246X.2007.03433.x.

     

    Qiang Z Y, Wu Q J. 2015. Upper mantle anisotropy beneath the north of northeast China and its dynamic significance. Chinese Journal of Geophysics (in Chinese), 58(10): 3540-3552, doi: 10.6038/cjg20151010.

     

    Rümpker G, Kaviani A, Latifi K. 2014. Ps-splitting analysis for multilayered anisotropic media by azimuthal stacking and layer stripping. Geophysical Journal International, 199(1): 146-163, doi: 10.1093/gji/ggu154.

     

    Romanowicz B, Yuan H Y. 2012. On the interpretation of SKS splitting measurements in the presence of several layers of anisotropy. Geophysical Journal International, 188(3): 1129-1140, doi: 10.1111/j.1365-246X.2011.05301.x.

     

    Savage M K, Silver P G. 1993. Mantle deformation and tectonics: constraints from seismic anisotropy in the western United States. Physics of the Earth and Planetary Interiors, 78(3-4): 207-227, doi: 10.1016/0031-9201(93)90156-4.

     

    Savage M K. 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?. Reviews of Geophysics, 37(1): 65-106, doi: 10.1029/98rg02075.

     

    Scholz J R, Barruol G, Fontaine F R, et al. 2018. SKS splitting in the Western Indian Ocean from land and seafloor seismometers: Plume, plate and ridge signatures. Earth and Planetary Science Letters, 498: 169-184, doi: 10.1016/j.epsl.2018.06.033.

     

    Shen S Y, Gao Y, Liu T Z. 2022. Two-layer anisotropy revealed by shear wave splitting beneath the NE margin of Tibetan Plateau: from Haiyuan fault to Yinchuan Garben. Chinese Journal of Geophysics (in Chinese), 65(5): 1595-1611, doi: 10.6038/cjg2022O0340.

     

    Silver P G, Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research: Solid Earth, 96(B10): 16429-16454, doi: 10.1029/91JB00899.

     

    Teng J W, Zhang Y Q, Ruan X M, et al. 2012. The seismic anisotropy of the crustal and mantle medium of the Earth interior and its dynamical response. Chinese Journal of Geophysics (in Chinese), 55(11): 3648-3670, doi: 10.6038/j.issn.0001-5733.2012.11.013.

     

    Tian X B, Zhang J L, Si S K, et al. 2011. SKS splitting measurements with horizontal component misalignment. Geophysical Journal International, 185(1): 329-340, doi: 10.1111/j.1365-246X.2011.04936.x.

     

    Usui Y, Kanao M, Kubo A, et al. 2007. Upper mantle anisotropy from teleseismic SKS splitting beneath Lützow-Holm Bay region, East Antarctica. U. S. Geological Survey, doi: 10.3133/of2007-1047.srp013.

     

    Vinnik L, Kosarev G, Makeyeva L I. 1984. Anisotropy in the lithosphere from the observations of SKS and SKKS. Proc. Acad. Sci. USSR, 278: 1335-1339.

     

    Vinnik L P, Makeyeva L I, Milev A, et al. 1992. Global patterns of azimuthal anisotropy and deformations in the continental mantle. Geophysical Journal International, 111(3): 433-447, doi: 10.1111/j.1365-246X.1992.tb02102.x.

     

    Wang P, Huang Z C, Wang X C. 2020. A method for estimating the crustal azimuthal anisotropy and Moho orientation simultaneously using receiver functions. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018405, doi: 10.1029/2019JB018405.

     

    Wang Q, Niu F L, Gao Y, et al. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data. Geophysical Journal International, 204(1): 167-179, doi: 10.1093/gji/ggv420.

     

    Wolfe C J, Silver P G. 1998. Correction to "Seismic anisotropy of oceanic upper mantle: Shear wave splitting methodologies and observations" by Cecily J. Wolfe and Paul G. Silver. Journal of Geophysical Research: Solid Earth, 103(B2): 2791-2791, doi: 10.1029/98jb00055.

     

    Wolfe C J, Solomon S C. 1998. Shear-wave splitting and implications for mantle flow beneath the MELT region of the East Pacific Rise. Science, 280(5367): 1230-1232, doi: 10.1126/science.280.5367.1230.

     

    Wookey J, Kendall J M, Rümpker G. 2005. Lowermost mantle anisotropy beneath the north Pacific from differential S-ScS splitting. Geophysical Journal International, 161(3): 829-838, doi: 10.1111/j.1365-246X.2005.02623.x.

     

    Wu C L, Xu T, Ai Y S, et al. 2021. Crustal azimuthal anisotropy in the Jiaodong Peninsula: Evidence for the suture between the North China Craton and South China Block. Physics of the Earth and Planetary Interiors, 314: 106705, doi: 10.1016/j.pepi.2021.106705.

     

    Wustefeld A, Bokelmann G. 2007. Null detection in shear-wave splitting measurements. Bulletin of the Seismological Society of America, 97(4): 1204-1211, doi: 10.1785/0120060190.

     

    Zuo J H, Niu F L. 2019. Shear-wave splitting parameters of two-layer anisotropic media estimated from three different multilayer measurement methods. Chinese Journal of Geophysics (in Chinese), 62(8): 2885-2898, doi: 10.6038/cjg2019N0037.

     

    常利军, 丁志峰, 王椿镛. 2015. 南北构造带南段上地幔各向异性特征. 地球物理学报, 58(11): 4052-4067, doi: 10.6038/cjg20151114. http://www.geophy.cn/article/doi/10.6038/cjg20151114

     

    高原, 吴晶, 易桂喜等. 2010. 从壳幔地震各向异性初探华北地区壳幔耦合关系. 科学通报, 55(29): 2837-2843. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201029009.htm

     

    刘希强, 周蕙兰, 郑治真等. 1998. 剪切波在双层方位各向异性介质传播中分裂参数的变化特性. 地球物理学报, 41(5): 680-690. http://www.geophy.cn/article/id/cjg_3920

     

    罗玉来, 何玉梅, 赵亮. 2016. 东南亚下方核幔边界D″层地震各向异性. 地球物理学报, 59(10): 3674-3683, doi: 10.6038/cjg20161014. http://www.geophy.cn/article/doi/10.6038/cjg20161014

     

    强正阳, 吴庆举. 2015. 中国东北地区北部上地幔各向异性及其动力学意义. 地球物理学报, 58(10): 3540-3552, doi: 10.6038/cjg20151010. http://www.geophy.cn/article/doi/10.6038/cjg20151010

     

    沈胜意, 高原, 刘同振. 2022. 剪切波分裂揭示的青藏高原东北缘分层各向异性形态: 从海原断裂至银川地堑. 地球物理学报, 65(5): 1595-1611, doi: 10.6038/cjg2022O0340. http://www.geophy.cn/article/doi/10.6038/cjg2022O0340

     

    滕吉文, 张永谦, 阮小敏等. 2012. 地球内部壳幔介质地震各向异性与动力学响应. 地球物理学报, 55(11): 3648-3670, doi: 10.6038/j.issn.0001-5733.2012.11.013. http://www.geophy.cn/article/doi/10.6038/j.issn.0001-5733.2012.11.013

     

    左佳卉, 钮凤林. 2019. 利用多层横波各向异性测量方法计算两层介质的分裂参数. 地球物理学报, 62(8): 2885-2898, doi:10.6038/cjg2019N0037. http://www.geophy.cn/article/doi/10.6038/cjg2019N0037

  • 加载中

(9)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-05-23
修回日期:  2022-09-21
上线日期:  2023-08-10

目录